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Abstract—Most modern cloud and web services are program-
matically accessed through REST APIs. This paper discusses
how an attacker might compromise a service by exploiting
vulnerabilities in its REST API. We introduce four security rules
that capture desirable properties of REST APIs and services.
We then show how a stateful REST API fuzzer can be extended
with active property checkers that automatically test and detect
violations of these rules. We discuss how to implement such
checkers in a modular and efficient way. Using these checkers, we
found new bugs in several deployed production Azure and Office-
365 cloud services, and we discuss their security implications. All
these bugs have been fixed.
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I. INTRODUCTION

Cloud computing is exploding. Over the last few years,
thousands of new cloud services have been deployed by cloud
platform providers, like Amazon Web Services [2] and Mi-
crosoft Azure [13], and by their customers who are “digitally
transforming” their businesses by modernizing their processes
while collecting and analyzing all kinds of new data.

Today, most cloud services are programmatically accessed
through REST APIs [9]. REST APIs are implemented on
top of the ubiquitous HTTP/S protocol, and offer a uni-
form way to create (PUT/POST), monitor (GET), manage
(PUT/POST/PATCH) and delete (DELETE) cloud resources.
Cloud service developers can document their REST APIs and
generate sample client code by describing their APIs using
an interface-description language such as Swagger (recently
renamed OpenAPI) [25]. A Swagger specification describes
how to access a cloud service through its REST API, including
what requests the service can handle, what responses may be
received, and the response format.

How secure are all those APIs? Today, this question is still
largely open. Tools for automatically testing cloud services
via their REST APIs and checking whether these services
are reliable and secure are still in their infancy. Some tools
available for testing REST APIs capture live API traffic,
and then parse, fuzz, and replay the traffic with the hope
of finding bugs [4], [21], [6], [26], [3]. Recently, stateful
REST API fuzzing [5] was proposed to specifically test more
deeply services deployed behind REST APIs. Given a Swagger
specification of a REST API, this approach automatically
generates sequences of requests, instead of single requests,
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in order to thoroughly exercise the cloud service deployed
behind that API, with the goal of finding unhandled exceptions
(service crashes) that can be detected by a test client as “500
Internal Server Errors”. While that work looks promising and
reports many new bugs found, its scope is restricted to the
detection of unhandled exceptions.

In this paper, we introduce four security rules that capture
desirable properties of REST APIs and services.

• Use-after-free rule. A resource that has been deleted
must no longer be accessible.

• Resource-leak rule. A resource that was not created
successfully must not be accessible and must not “leak”
any side-effect in the backend service state.

• Resource-hierarchy rule. A child resource of a parent
resource must not be accessible from another parent
resource.

• User-namespace rule. A resource created in a user
namespace must not be accessible from another user
namespace.

Violations of such rules might allow an attacker to hijack cloud
resources or bypass quotas (Elevation-of-Privilege attack), or
to steal information from other users (Information-Disclosure
attack), or to corrupt the backend service state so that it no
longer operates properly (Denial-of-Service attack), as will be
discussed later.

We show how a stateful REST API fuzzer can be extended
to test and detect violations of such rules. For each rule, we
define an active property checker which (1) generates new API
requests to test specific rule violations and (2) detects any such
rule violation. In other words, each checker actively tries to
break its rule in addition to monitoring for any rule violation.
We discuss how to implement such checkers in a modular way,
so that checkers do not interfere with each other. Since each
checker generates new tests, in addition to an already-large
state space exploration, we also discuss how to implement each
individual checker efficiently, by eliminating likely-redundant
tests whenever possible.

By construction, these checkers can find security rule vio-
lations beyond the “500 Internal Server Errors” that can be
detected by baseline stateful REST API fuzzing. Using these
checkers, we found new bugs in several production Azure
and Office-365 cloud services. The use of security checkers
increases the value of REST API fuzzing by detecting more
types of bugs at a modest incremental testing cost.

This paper makes the following contributions:



• We introduce rules that describe security properties of
REST APIs.

• We design and implement active checkers to test and
detect violations of these rules.

• We present detailed experimental results evaluating the
performance and effectiveness of these active checkers
on three production cloud services.

• With these checkers, we found new bugs in several
production Azure and Office-365 cloud services, and we
discuss their security implications.

The rest of the paper is organized as follows. In Sec-
tion II, we recall background information on stateful REST
API fuzzing. In Section III, we introduce rules that capture
desirable properties of secure REST APIs and present active
checkers to test and detect violations of these rules. In Sec-
tion IV, we present experimental results with active checkers
on production cloud services. In Section V, we discuss new
bugs found by these checkers and their security implications.
In Section VI, we discuss related work, and we conclude the
paper in Section VII.

II. STATEFUL REST API FUZZING

In this section, we recall the definition of stateful REST API
fuzzing [5], before introducing in Section III security property
checkers that can be implemented as extensions of this basic
scheme.

We consider cloud services accessible through REST APIs.
A client program sends messages, called requests, to a service
and receives messages back, called responses. Such messages
are sent over the HTTP/S protocol. Each response is associated
with a single HTTP status code which is either in the 2xx,
3xx, 4xx or 5xx ranges.

Swagger [25], also known as OpenAPI, is an example
of specification language to define REST APIs. A Swagger
specification describes how to access a service through its
REST API, including what requests the service can handle,
what responses may be received, and the respective response
format.

We define a REST API as a finite set of requests. Each
request r is a tuple of the form 〈a, t, p, b〉 where
• a is an authentication token,
• t is the request type,
• p is a resource path, and
• b is the request body.

A request type t is any of the following five REST-allowed
values: PUT (create or update), POST (create or update), GET
(read, list or query), DELETE (delete), PATCH (update). The
resource path p is a string identifying a cloud resource and
its parent hierarchy. Typically, p is a (non-empty) sequence
matching the regular expression

(/〈resourceType〉/〈resourceName〉/)+
where resourceType denotes the type of a cloud resource
and resourceName is the specific name of the resource of
that type. The last resource named in the path is typically
the specific resource that the request tries to create, access, or

delete. The request body b may include additional parameters
and their values that may be required or optional for the
request to be executed successfully.

For instance, here is a request to get the properties of a
specific Azure DNS zone [14] (shown on multiple lines):

〈 User-auth-token 〉 GET
https://management.azure.com/
subscriptions/{subscriptionId}/
resourceGroups/{resourceGroupName}/
providers/Microsoft.Network/
dnsZones/{zoneName}
?api-version=2018-03-01 { }

This request is of type GET, its path requires three
resource names, namely a subscriptionID, a
resourceGroupName, and a zoneName, and its body (at
the end) denoted by { } is empty.

REST API requests of type PUT or POST typically cre-
ate new resources, while DELETE requests destroy existing
resources. A request whose execution creates a new resource
of type T is called a producer for the resource type T . A
newly created resource is represented by its identifier, or
id for short. Because resources are dynamically created, we
will sometimes call them dynamic objects. A request which
requires a resource name of type T in its path or in its body is
called a consumer for the resource type T . We will sometimes
refer to the resource name of type T as the dynamic object
type. In the Azure DNS zone example above, the GET request
shown consumes three resources of type subscriptions,
resourceGroups, and dnsZones respectively, but does
not produce any new resource.

Inside resource paths or request bodies of individual re-
quests, the user is allowed to specify that some specific values,
called fuzzable values, are to be chosen randomly among a
(small finite) set of specific values. For instance, a user might
specify that a given integer value in the body of a request
may be, say, either 0, 10, 1000000, or -10. Such a set
of values is called a fuzzing dictionary. Given a request with
fuzzable values, a rendering of that request denotes a mapping
of each fuzzable value to a single concrete value selected in
its fuzzing dictionary. Thus, a request with n fuzzable values
which can each take k possible values results in nk possible
renderings. A rendering is called valid if the execution of the
corresponding request returns a valid response (defined in the
next paragraph). Users are responsible for identifying values
they want to fuzz and their associated fuzzing dictionaries.

We define the state space of a service as a directed graph
where nodes represent service states and edges are transitions
between these. Given a state s of the service, executing a
single request r leads to a successor state s′: this execution is
denoted by s

r→ s′. The execution of a request r in a state s is
either valid if it triggers a 2xx response, invalid if it triggers a
3xx or 4xx response, or a bug if it triggers a 5xx response.

Given an initial state where no resources exist, the state
space of the service reachable from that initial state can
be explored by executing sequences of requests. Such an
exploration is stateful when it attempts to explore service states



that are reachable only using sequences of multiple requests:
earlier requests in a sequence may produce resources that are
consumed in subsequent requests in that sequence in order to
exercise more requests and reach deeper service states.

State-space exploration can be performed using various
search strategies, e.g., a systematic breadth-first search or a
random search [5]. State spaces can be large, even infinite, be-
cause the length of request sequences is not bounded, because
the sets of possible renderings can be very large, and because
the service under test is viewed as a blackbox. Fortunately,
a partial state-space exploration may be sufficient to reveal
interesting bugs. In our context, a bug is defined as a 500
HTTP status code being received as a response after executing
a request sequence. Such “500 Internal Server Errors” are
unhandled exceptions triggered by unexpected input request
sequences, which may corrupt the service state and severely
damage the service health: it is safer to fix such bugs rather
than risk a live incident with unknown consequences.

In what follows, we will sometimes use the term test cases
to refer to executions of request sequences, while tests refer
to executions of single requests. We will also call the general
state-space exploration algorithm of this section the main
driver of stateful REST API fuzzing.

III. SECURITY CHECKERS FOR REST APIS

In this section, we define and describe active checkers
for security rules of REST APIs. First, in Section III-A, we
introduce four REST API security rules. In Section III-B, we
describe how to implement active checkers for testing and
detecting security rule violations. Each active checker focuses
on a single type of security rule violation. In Section III-C, we
discuss how each checker can be combined in a modular way
with the other checkers and with the main driver of stateful
REST API fuzzing. In Section III-D, we propose a new search
strategy for scalable test generation with property checkers.
In Section III-E, we describe how to group together checker
violations in order to avoid reporting the same bug multiple
times to the user.

A. Security Rules

We introduce four security rules that capture desirable
properties of REST APIs and services. We illustrate each rule
with an example and discuss its security implications. All four
rules are inspired by past real bugs in deployed cloud services,
which were found either by manual penetration testing or by
root cause analysis of customer-visible incidents. Examples of
new, previously-unknown bugs we found as rule violations
in deployed production Azure and Office-365 services are
presented later in Section V.
Use-after-free rule. A resource that has been deleted must
no longer be accessible. In other words, after a successful
DELETE operation on any resource, any subsequent operation
– like read, update, or delete – on that resource must fail.

For example, after issuing a DELETE request to URI
/users/user-id1 in order to delete the account with iden-
tifier user-id1, all subsequent attempts to use user-id1

must fail and thus return a “404 Not Found” HTTP status
code in their response.

A use-after-free violation occurs when a resource that has
been deleted still remains accessible through the API. This
must never happen. It is a clear bug that may lead to bypassing
resource quotas and corrupting the service backend state.
Resource-leak rule. A resource that was not successfully
created must not be accessible, and must not “leak” any
associated resources in the backend service state. In other
words, if the execution of a PUT or POST request to create a
new resource fails (for any reason), any subsequent operation
on that resource must also fail with a 4xx response. Fur-
thermore, no side-effects associated with successful creation
of that resource type must occur in the backend service state
and be visible to the user. For instance, a failed-to-be-created
resource must not be counted in the user’s resource counter
towards service quotas, and the name of the failed-to-be-
created resource must be reusable by the user.

As an example, after issuing a malformed PUT request to
create URI /users/user-id1, a 4xx response must be
received. Any subsequent request to access (read, update, or
delete) this URI must also fail.

A resource-leak violation occurs when a resource that was
not successfully created nevertheless “leaks” some side-effect
in the backend service state. For instance, the resource may be
listed by a subsequent GET request, yet it cannot be deleted
with a DELETE request, or subsequent attempts to re-create
this resource return “409 Conflict” responses. Such violations
must never happen, as they may have unintended consequences
on the capacity for that resource type (e.g., if resource quota
limits are reached and no new resources can be created) and
on the performance of the service (e.g., due to unnecessarily
large database tables).
Resource-hierarchy rule. A child resource of a parent
resource must not be accessible from another parent
resource. In other words, if a resource child is
successfully created from a resource parent and
identified as such in service resource paths of the form
〈parentType〉/parent/〈childType〉/child/, the
child resource must not be accessible (i.e., must not be
successfully read, updated or deleted) when substituting the
parent resource by any other parent resource.

For example, after issuing POST requests to URIs
/users/user-id1, /users/user-id2, and
/users/user-id1/reports/report-id1 to create
users user-id1, user-id2, and then add report
report-id1 to user user-id1, subsequent requests
to URI /users/user-id2/reports/report-id1
must fail since, according to the resource-hierarchy rule,
report report-id1 belongs to user user-id1 but not to
user user-id2.

A resource-hierarchy violation occurs when a sub-resource
originally created from a parent resource is accessible from
a different parent resource with no parent-child relation-
ship. When such violations are possible, an attacker might
be able to provide an unauthorized parent object identifier



1 Inputs: seq, global cache, reqCollection
2 # Retrieve the object types consumed by the last request and
3 # locally store the most recent object id of the last object type.
4 n = seq.length
5 req obj types = CONSUMES(seq[n])
6 # Only the id of the last object is kept, since this is the
7 # object actually deleted.
8 target obj type = req obj types[−1]
9 target obj id = global cache[target obj type]

10 # Use the latest value of the deleted object and execute
11 # any request that type−checks.
12 for req in reqCollection:
13 # Only consider requests that typecheck.
14 if target obj type not in CONSUMES(req)
15 continue
16 # Restore id of deleted object.
17 global cache[target obj type] = target obj id
18 # Execute request on deleted object.
19 EXECUTE(req)
20 assert ’’HTTP status code is 4xx’’
21 if mode != ’exhaustive’:
22 break

Fig. 1: Use-after-free checker.

(e.g., user-id3), and then steal (read) or hijack (write)
an unauthorized child object (e.g., report-id1). Resource-
hierarchy violations are clear bugs, are potentially dangerous,
and must never happen.
User-namespace rule. A resource created in a user namespace
must not be accessible from another user namespace. In the
context of REST APIs, we consider user namespaces defined
by the user token used to interact with the API (e.g., OAUTH
token-based authentication [18]).

For example, after issuing a POST request to create URI
/users/user-id1 using token token-of-user-id1,
resource user-id1 must not be accessible using another
token token-of-user-id2 of another user.

A user namespace violation occurs when a resource created
within the namespace of one user is accessible from within the
namespace of another user. If such a violation ever occurs, an
attacker might be able to execute REST API requests using an
unauthorized authentication token, and perform unauthorized
operations on resources belonging to another (victim) user.

B. Active Checkers

We implement active checkers for the rules defined in
Section III-A. An active checker monitors the state space
exploration performed by the main driver of stateful REST
API fuzzing and suggests new tests to assert that specific
rules are not violated. Thus, an active checker augments the
search space by executing new tests targeted at violating
specific rules. In contrast, a passive checker monitors the
search performed by the main driver without executing new
tests.

We design active checkers following a modular design based
on two principles:

1) Checkers are independent from the main driver of state-
ful REST API fuzzing and do not affect its state space
exploration.

2) Checkers are independent from each other and generate
tests by analyzing the requests executed by the main
driver, excluding those executed by other checkers.

1 Inputs: seq, global cache, reqCollection
2 # Retrieve the object types produced by the whole sequence and by
3 # the last request separately to perform type checking later on.
4 seq obj types = PRODUCES(seq)
5 target obj types = PRODUCES(seq[−1])
6 for target obj type in target obj types:
7 for guessed value in GUESS(target obj type):
8 global cache[target obj type] = guessed value
9 for req in reqCollection:

10 # Skip consumers that don’t consume the target type.
11 if CONSUMES(req) != target obj type:
12 continue
13 # Skip requests that don’t typecheck.
14 if CONSUMES(req) − seq obj types:
15 continue
16 # Execute the request accessing the ’’guessed’’ object id.
17 EXECUTE(req)
18 assert ’’HTTP status code in 4xx class’’
19 if mode != ’exhaustive’:
20 break

Fig. 2: Resource-leak checker.

We enforce the first principle by running all the checkers
whenever the main driver has finished executing a new test
case. We enforce the second principle by prioritizing the order
of applying checkers based on their semantics, so that they
operate on different test cases and do not interfere with each
other (more on this later in this section). In what follows,
we present implementation details of each checker as well as
optimizations to limit state-space explosion.
Use-after-free checker. The implementation of the use-after-
free rule checker is described in Figure 1 in python-like
notation. The algorithm is called after the main driver executes
a DELETE request (see Figure 4) and takes three inputs:
a sequence seq of requests, which is the latest test case
executed by the main driver; the global cache of dynamic
objects, denoted global_cache, which contains the most
recent object types and ids for the dynamic objects created so
far; and the request collection, denoted reqCollection,
which is the set of all available API requests.

First, the types of the dynamic objects consumed by the
last request are retrieved (line 5) and the id of the last
object type, denoted target_obj_type, is stored in a
temporary variable, denoted target_obj_id. Although the
last request may be consuming more than one object type, we
consider the last type in req_object_types as the actual
type of the deleted object. (For example, a DELETE request on
the URI /users/userId1/reports/reportId1 con-
sumes two object types (users and reports) but only deletes
report objects.) After this initial setup, the for-loop (line 12)
iterates over all requests available in reqCollection and
skips those that do not consume the target object type (line 14).
Once a request, req, that consumes the target object type is
found, the target object id is restored in the global cache of
dynamic objects (line 17) and is therefore used by the function
EXECUTE (line 19) which executes request req. Note that
the target object id is repeatedly restored in the global cache
because the function EXECUTE uses object ids available in
global_cache when executing a request. If any of these
requests succeeds, line 20 will trigger a use-after-free violation
(see Section III-A).



1 Inputs: seq, global cache
2 # Record the object types consumed by the last request
3 # as well as those of all predecessor requests.
4 n = seq.length
5 last request = seq[n]
6 target obj types = CONSUMES(seq[n])
7 predecessor obj types = CONSUMES(seq[:n])
8 # Retrieve the most recent id of each child object consumed
9 # only by the last request. These are the objects whose

10 # hierarchy we will try to violate.
11 local cache = {}
12 for obj type in target obj types − predecessor obj types:
13 local cache[obj type] = global cache[obj type]
14 # Render sequence up to before the last request
15 EXECUTE(seq, n−1)
16 # Restore old children object ids that do NOT belong to
17 # the current parent ids and must NOT be accessible from those.
18 for obj type in local cache:
19 global cache[obj type] = local cache[obj type]
20 EXECUTE(last request)
21 assert ’’HTTP status code is 4xx’’

Fig. 3: Resource-hierarchy checker.

Finally, in order to limit the number of additional tests gen-
erated for each request sequence, the inner loop (optionally)
terminates when one request for each target object type is
found (line 21). This option is used if the variable mode is not
set to value exhaustive. We present detailed experimental
results regarding the impact of this optimization in Section IV.
Resource-leak checker. The resource-leak rule checker is
described in Figure 2. The algorithm takes the same three
inputs as the use-after-free checker. This checker operates on
request sequences executed by the main driver whose last
request led to an invalid HTTP status code in the response
(see Figure 4). Initially, the algorithm identifies the dy-
namic object types produced by the whole sequence, denoted
seq_obj_types, and produced by the last request, denoted
target_obj_types (lines 4 and 5). The main logic of
the algorithm is implemented in three nested for loops. The
first loop (line 6) iterates over all object types produced by
the last request. The second loop (line 7) iterates over object
ids “guessed” for the current object type for which an invalid
HTTP status code was received. The function GUESS takes as
argument an object type and returns a set of possible object ids
matching this type and which were not created successfully.
For instance, if the creation of a dynamic object with object
type “x” and object id “objx1” fails through the API (according
to the response received), the checker will attempt to execute
any request that consumes the object type “x” and assert it fails
when using the object id “objx1”. Note that the total number
of guessed values per object id is limited to a user-provided
parameter value in order to avoid an explosion in the number
of additional tests.

In line 8, a guessed object-id value is temporarily added
to the global cache of properly-created dynamic objects.
Then the inner loop (line 9) iterates over all requests in
reqCollection to find requests that are executable (given
the object types produced by the current sequence) and that
consume the given target object type. These requests are
executed (line 17) using the “guessed” object ids previously
registered in the global cache. This way, the algorithm tries to

1 Inputs: seq, global cache, reqCollection
2 # Execute the checkers after the main driver.
3 n = seq.length
4 if seq[n].http type == ’’DELETE’’:
5 UseAfterFreeChecker(seq, global cache, reqCollection)
6 else:
7 if seq[n].http response == ’’4xx’’:
8 ResourceLeakChecker(seq, global cache, reqCollection)
9 else:

10 ResourceHierarchyChecker(seq, global cache)
11 UserNamespaceChecker(seq, global cache)

Fig. 4: Checkers dispatcher.

trigger a resource-leak violation (see Section III-A) or asserts
that no such violation occurs for the given request sequence
(line 18).

Finally, in order to limit the number of additional tests
generated for each input sequence, the inner loop (optionally)
terminates when one request for each guessed object is found
(line 19). We evaluate this optimization in Section IV.
Resource-hierarchy checker. The implementation of the
resource-hierarchy rule checker is described in Figure 3. The
algorithm takes two inputs: a sequence of requests, denoted
seq, which is the latest test case executed by the main driver
and the current global cache of dynamic objects, denoted
global_cache. First, the algorithm records the object types
consumed by the last request of the current sequence, de-
noted target_obj_types (line 6), and the object types
consumed by all other requests of the sequence before the
last request, denoted predecessor_obj_types (line 7).
Afterwards, the ids of the objects consumed only by the last
request are stored locally (lines 12 and 13). These are the
child objects whose hierarchy the checker will try to violate
by executing requests that try to access them using invalid
parent objects. To this end, in line 15, the current sequence
is executed up to (and not including) the last request. Finally,
the old child object ids are restored (lines 18 and 19) and the
last request is executed using the old child object ids on top
of new parent object ids (line 20). These parent object ids
are not proper parent objects of the restored child object ids.
This way, the algorithm tries to trigger a resource-hierarchy
violation (see Section III-A) or asserts that no such violation
occurs for the given request sequence (line 21).
User-namespace checker. Due to space constraints, we omit a
detailed presentation of this checker. In a nutshell, this checker
attempts to re-execute the valid last request of any test case
executed by the main driver using a different authentication
token. If this succeeds, an attacker with a different authenti-
cation token could hijack the objects used in the last request,
and a user namespace violation (see Section III-A) is reported.

C. Combining All Checkers

The four checkers defined in the previous section are
executed as follows. Whenever the stateful REST API fuzzer
reaches a new state (as defined in Section II), its main driver
calls the code shown in Figure 4. Depending on the last request
executed, this code activates the checkers that are applicable
to the current state. We now discuss important properties of
these checkers and of their combination.



Contribution beyond stateful REST API fuzzing. The
checkers extend the main driver of baseline stateful REST
API fuzzing in two ways: (1) they extend the state space by
executing additional tests and (2) they check for responses
other than 5xx and can flag unexpected 2xx responses as
rule-violation bugs. Thus, they clearly increase the bug-finding
capabilities of the main driver: they can find bugs that the main
driver alone would not find.
Active property checking versus passive monitoring. As
discussed earlier, the checkers we define extend the search
space explored by the main driver with additional test cases
aimed at triggering and detecting specific rule violations. In
contrast, passive runtime monitoring of these rules in conjunc-
tion with the main driver, i.e., without executing those new
tests, would likely be unable to detect rule violations. Specif-
ically, use-after-free and resource-leak rule violations would
likely not be detected with passive monitoring alone because
the default state space exploration, performed by the main
driver, would likely not attempt to re-use deleted resources
or resources after a failure, respectively. Similarly, resource-
hierarchy and user-namespace rule violations would not be
detected by passive monitoring either because the baseline
main driver does not attempt to substitute object identifiers
or authentication tokens, respectively. In other words, the
additional test cases generated by the checkers are necessary
to find rule violations and are not redundant with respect to
non-checker tests.
Complementarity among the checkers. The four checkers
we define complement each other: no two checkers will ever
generate the same new tests, by construction, because their
preconditions are all mutually exclusive. First, the use-after-
free checker is the only checker activated by request sequences
that end in a DELETE request. Second, the resource-leak
checker is the only checker activated when the last request
executed returns an invalid HTTP status code. Third, the
resource-ownership checker is the only checker activated on
request sequences with valid renderings that do not end in a
DELETE request. Fourth and last, the user-namespace checker
executed tests using an attacker token different from the
authentication token used by the main driver and all other
checkers, so it clearly extends the state space in another,
orthogonal dimension.

D. Search Strategies for Checkers

The main search strategy used for test generation in stateful
REST API fuzzing [5] is a breadth-first search (BFS) in the
search space defined by all possible request sequences. This
search strategy provides full grammar coverage both with
respect to all possible renderings of each individual request
and with respect to all possible request sequences up to
a given sequence length. However, since the search space
explored by BFS is typically enormous, the search does not
scale well as the sequence length increases. Therefore, an
optimization called BFS-Fast was introduced. With BFS-Fast,
whenever the search depth increases to a new value n + 1,
each request is appended to at most one request sequence

of length n, instead of to all of them as in BFS [5]. BFS-
Fast provides full grammar coverage only with respect to all
possible renderings of individual requests but does not explore
all request sequences of a given sequence length.

Although BFS-Fast scales better compared to BFS, it does
so by exploring only a subset of all possible request sequences.
Unfortunately, this limits the number of violations the security
checkers can actively check. To alleviate this limitation, we
introduce a new search strategy, called BFS-Cheap.

BFS-Cheap follows the inverse trade-off of BFS-Fast: it
sacrifices full coverage of all possible request renderings at
every state but explores all possible request sequences for a
given sequence length, albeit not with all possible renderings.
Specifically, given a set of sequences of length n, called
seqSet, and a set of requests, called reqCollection,
BFS-Cheap operates as follows:

For each sequence seq ∈ seqSet, append each
req ∈ reqCollection to the end of seq, execute
the new sequence while considering the possible
renderings of req, and add to seqSet at most
one valid (if any) and one invalid (if any) sequence
rendering.

Valid renderings are used by the use-after-free, resource-
hierarchy, and user-namespace checkers, while invalid render-
ings are used by the resource-leak checker.

BFS-Cheap thus provides a middle-ground between BFS
and BFS-Fast (see Section IV-B for an experimental eval-
uation). It explores all possible request sequences up to a
given sequence length (like BFS) and adds at most two new
renderings for each sequence in order to avoid an enormous
seqSet (like BFS-Fast). Two new renderings per sequence
explored allow for active checking of all the security rules
defined in Section III-A while maintaining a tractable number
of sequences in seqSet as the sequence length increases.

Note that the suffix “cheap” comes from the fact BFS-Cheap
is a cheaper version of BFS where at most one valid rendering
is added to the BFS “frontier” setSeq for each new sequence.
This leads to the creation of fewer resources than those
created when all valid renderings of each request sequence are
explored, as in BFS. For instance, imagine a request definition
with an enum type describing ten different flavours of the
same resource type. BFS-Cheap will stop creating resources
once one resource of one flavour is successfully created. In
contrast, BFS and BFS-Fast, will create ten resources of the
same type with ten different flavours.

E. Bug Bucketization

Before discussing examples of real violations found with
active checkers, we define the bucketization scheme used to
group together similar violations. In the context of active
checkers, we define “bugs” as rule violations. Each bug is
associated with the request sequence that was executed to
trigger it. Given this property, we use the following procedure
to create per-checker bug buckets:

Whenever a new bug is found, compute all non-
empty suffixes of the request sequence that triggers



API Total
Req.

Search
Strategy

Max
Len.

Tests Main Checkers Checker Stats

Use-Aft-Free Leak Hierarchy NameSpace
Azure A 13 BFS 3 3255 48.1% 51.9% 11.5% 1.5% 0.1% 38.8%

BFS-Cheap 4 4050 55.0% 45.0% 10.0% 0.8% 2.4% 31.8%
BFS-Fast 9 4347 59.2% 40.8% 15.5% 0.2% 0.1% 25.1%

Azure B 19 BFS 5 7721 46.4% 53.6% 3.6% 0.4% 0.2% 49.4%
BFS-Cheap 5 7979 46.2% 53.8% 3.5% 0.4% 0.2% 49.7%
BFS-Fast 40 17416 65.3% 34.7% 0.3% 0.0% 0.1% 34.3%

O-365 C 18 BFS 3 11693 89.4% 10.6% 0.0% 1.0% 0.1% 9.5%
BFS-Cheap 4 10982 95.9% 4.1% 0.0% 0.0% 0.1% 4.0%
BFS-Fast 33 18120 66.9% 33.1% 0.0% 0.0% 0.1% 33.0%

TABLE I: Comparison of BFS, BFS-Fast and BFS-Cheap. Shows the maximum sequence length (Max Len.), the number of requests sent
(Tests), the percentage of tests generated by the main driver (Main) and by all four checkers combined (Checkers) and individually, with
each search strategy after 1 hour of search. The second column shows the total number of requests in each API.

the bug, starting with the smallest one. If a suffix
exists in a previously-recorded bug bucket, add the
new sequence to that existing bug bucket. Otherwise,
create a new bug bucket for the new sequence.

This bug bucketization scheme is the same as the one in
stateful REST API fuzzing [5], but we maintain separate, per-
checker bug buckets because the failure conditions are defined
differently for each rule. Each bug will always be triggered by
one checker for a specific sequence length (because of checker
complementarity), except for “500 Internal Server Error” bugs
which may be triggered by both the main driver and checkers.
For 500 bugs, the new sequence will be added only once to
the bug bucket of the main driver or checker that triggered it
first.

IV. EXPERIMENTAL EVALUATION

In this section, we report results of experiments with three
production cloud services. These services and our experimen-
tal setup are described in Section IV-A. Then, we compare
in Section IV-B the three search strategies described in Sec-
tion III-D. Next, we present results showing the number of rule
violations reported by each checker on the three cloud services
as well as the impact of various optimizations (Section IV-C).

A. Experimental Setup

We report results of experiments performed with three cloud
services, whose names are anonymized (to avoid targeting
them): Azure A and Azure B are two Azure [13] management
services, and O-365 C is an Office365 [16] messaging service.
The number of requests in the REST API of each of these
three services ranges from 13 to 19 requests. We selected
those three services because their size and complexity are
representative among the cloud services we analyzed. So far,
we have performed similar experiments with about a dozen
production services, and our general experience with these
other services is summarized in Section V.

Every service we consider has a publicly-available Swagger
specification [15]. For each service, we compile its specifica-
tion to produce a test-generation grammar, similarly to prior
work [5]. Each grammar is encoded as executable python code.
For a given service and API, the same grammar and fuzzing
dictionaries were used across all the experiments reported

in this section. There is no randomness in the renderings
generated. We ran our fuzzing experiments using a single-
threaded fuzzer running on a PC connected to the internet and
a valid service subscription that allows access to each service
API. No other special test setup or service knowledge was
required. As in [5], our fuzzer includes a garbage-collector that
deletes no-longer-used resources (dynamic objects) in order to
avoid exceeding service quota limits.

We fuzz production services already deployed and acces-
sible to anyone with a valid subscription, but we have no
visibility as to what happens inside the backend of the services
we test. Our fuzzer only observes the HTTP status codes of the
responses it receives. All client-side requests are sent over the
internet to the target services, and responses are parsed when
they are received. Because we do not control the deployment
of these services, the experiments reported in this section are
not fully controlled. However, we performed these experiments
several times and the results did not vary significantly.

B. Comparing Search Strategies

We now compare our new search strategy, BFS-Cheap, with
BFS and BFS-Fast when using security checkers to fuzz real
services. We present results of experiments with two Azure
and one Office-365 services, denoted by Azure A, Azure B,
and O-365 C respectively.

Table I shows individual experiments with the three search
strategies on each service, over a fixed time budget of one
hour per experiment. For each experiment, we report the total
number of requests in the API (Total Req.), the maximum
sequence length generated (Max Len.), the total number of
requests sent (Tests), the percentage of the requests sent by
the main driver (Main) and the active checkers (Checkers) as
well as the individual contribution of each checker.

Table I clearly shows that, for all services, BFS reaches
the smallest depth, BFS-Fast reaches the largest depth, and
BFS-Cheap provides a trade-off between these two extremes,
while being closer to BFS than BFS-Fast. The total number of
tests generated varies across services, depending on the speed
of the responses received from each service. For any given
service, this number remains roughly similar except for BFS-
FAST with Azure B and O-365 C where the total number of
tests increases significantly. For O-365 C, this increase seems



API Total
Req. Mode Statistics Bug Buckets

Tests Checkers Main Use-Aft-Free Leak Hierarchy NameSpace
Azure A 13 optimized 4050 45.0% 4 3 0 0 0

exhaustive 2174 54.5% 4 3 0 0 0
Azure B 19 optimized 7979 46.2% 0 0 1 0 0

exhaustive 9031 63.9% 0 0 1 0 0
O-365 C 18 optimized 10982 4.1% 1 0 0 1 0

exhaustive 11724 11.4% 0 0 0 1 0

TABLE II: Comparison of modes optimized and exhaustive for two Azure and one Office-365 services. Shows the number of requests
sent in 1 hour (Tests) with BFS-Cheap, the percentage of tests generated by all four checkers combined (Checkers), and the number of bug
buckets found by the main driver and each of the four checkers. Optimized finds all the bugs found by exhaustive but its main driver explores
more states faster given a fixed test budget (1 hour).

to be due to a significantly lower number of failed requests
generated by BFS-FAST for these two services compared to
BFS and BFS-Cheap. Such failed requests are sent back to the
client (our fuzzer) with larger time delays. Delaying responses
to failed requests is a well-known mechanism used by services
to throttle future requests, i.e., to try to slow them down. For
Azure B, BFS-Fast executes more tests because its request
sequences are deeper but include many DELETE requests
which are faster to execute (their responses are received almost
instantly): BFS-Fast executes about 9 times more DELETE
requests than BFS or BFS-Cheap.

The total percentage of checker tests (Checkers) is the
highest for BFS and the lowest for BFS-FAST, while BFS-
Cheap is again in between. Indeed, while BFS-Fast generates
the largest number of tests, its search space is pruned and
activates checkers less often, as discussed in Section III-D
– this is the precise motivation for introducing BFS-Cheap
in that section. An exception is the 33% spike in checker-
generated tests by BFS-FAST for O-365 C. This spike seems
to be due to a larger number of successful requests (see the
previous paragraph), which in turn led to more checker tests.

From the individual checker statistics in Table I, we observe
that the number of tests they each generate varies from service
to service. This number depends on the number of DELETE
requests executed for the use-after-free checker, the number of
failed resource-creation requests for the resource-leak checker,
and the depth of the object hierarchy for the resource-hierarchy
checker. In contrast, the user-namespace checker is triggered
more consistently more often and contributes the largest per-
centage of checker-generated tests.

For all three services, the number of bugs found is nearly
the same for all three search strategies and is discussed next.

C. Comparing Checker Optimizations

We now compare the performance of the two modes opti-
mized and exhaustive discussed in Section III.

Table II shows how many requests were sent in one hour
of fuzzing with BFS-Cheap in the Tests column, and what
percentage of those requests were generated by either the main
driver of Section II or by any of the four checkers. The table
also shows how many unique bugs (bug buckets) were found
in one hour of search by the main driver and by each of the
checkers. Results are presented for both the optimized and the
exhaustive modes previously discussed.

We observe that the number of tests varies for different
services and checker modes. However, the percentage of tests
generated by the checkers is always higher with the exhaustive
mode, as expected. Since in the optimized mode the checkers
produce fewer tests per visited state, the main driver is allowed
to explore more states faster. Yet, despite the lower number of
checker tests per visited state, for all three services considered,
the optimized mode finds all the unique bugs (bug buckets)
found by the exhaustive mode. Also, for the O-365 C service,
the main driver finds one more bug with the optimized mode
compared to the exhaustive mode within one hour of search.

Table II reveals an interesting inversion that further demon-
strates the value of the optimized checkers mode. In Azure
A, we observe that the optimized mode produces almost
twice as many tests than than the exhaustive mode (4050
versus 2174). At first sight, this is counter-intuitive. After
a deeper investigation, we discovered that some of the tests
produced by the exhaustive mode of the user-namespace
checker have significantly larger response times for service
Azure A. Indeed, this specific checker in exhaustive mode
executes additional tests compared to the optimized mode, but
containing expensive operations (i.e., high latency) that slow
down the overall test throughput.

During the course of all experiments with these three
services, we found and reported a total of 7 unique bugs to
the developers of those services, including 4 500 bugs found
by the main driver and 3 bugs found by each of the checkers
except the user-namespace checker. In the next section, we
discuss several interesting bugs found thanks to the checkers
introduced in this paper.

V. EXAMPLES OF REST API SECURITY
VULNERABILITIES

At the time of this writing, we have fuzzed nearly a dozen
production Azure and Office-365 cloud services of size and
complexity similar to the three services used in the previous
section. In almost all cases, our fuzzing was able to find about
a handful of new bugs in each of these services. About two
thirds of those bugs are “500 Internal Server Errors”, and
about one third are rule violations reported by our new security
checkers. We reported these bugs to the service owners, and
all have been fixed.

We emphasize that, even when the security checkers do
not find any bugs, they increase confidence that the rules



they check cannot be violated and therefore they increase
confidence in the overall service reliability and security.

This section presents examples of real bugs found in
deployed Azure and Office-365 services and discuss their
security relevance. We anonymize the name of those services
and key details not to target any specific service.
Use-after-free violation in Azure. In an Azure service, we
found the following use-after-free violation.

1) Create a new resource R (with a PUT request).
2) Delete resource R (with a DELETE request).
3) Create a new child resource of the deleted resource R

and of a specific type (with another PUT request).
This sequence of requests results in a “500 Internal Server Er-
ror”. The Use-after-free checker catches this as (1) it attempts
to re-use in Step 3 the deleted resource in Step 2 and (2) the
response of Step 3 is different from the expected “404 Not
Found” response.
Resource-hierarchy violation in Office365. In an Office365
messaging service where users can post messages and then
reply and edit these, the resource-hierarchy checker detected
the following bug.

1) Create a first message msg-1 (with a request POST
/api/posts/msg-1).

2) Create a second message msg-2 (with a request POST
/api/posts/msg-2).

3) Create a reply reply-1 to the first message (with a
request POST /api/posts/msg-1/replies/reply-1).

4) Edit the reply reply-1 with a PUT request using
msg-2 as message identifier (with a request PUT
/api/posts/msg-2/replies/reply-1).

Surprisingly, the last request in Step 4 returns a “200 Al-
lowed” response while it must have returned a “404 Not
Found” response. This rule violation reveals that the imple-
mentation of the API that posts a reply does not analyze
the full hierarchy when checking permissions for a reply.
Missing hierarchy validation checks are potential security
vulnerabilities: an attacker might be able to exploit them to
access child objects by bypassing the parent hierarchy.
Resource-leak violation in Azure. In another Azure service,
the resource-leak checker triggered the following bug.

1) Create a new resource of type CM and of name X with
a specific malformed body (with a PUT request). This
returns a “500 Internal Server Error”, which is already
a bug.

2) Get a list of all resources of type CM: the returned list
is empty.

3) Create a new resource of type CM with the same name X
as in Step 1 with a well-formed body but in a different
region (e.g., US-West versus US-Central) with a PUT
request.

Unexpectedly, the last request in Step 3 returns a response
“409 Conflict” instead of an expected “200 Created”. This
behavior means that the service has reached an inconsistent
state: the failed request in Step 1 has left unintended side-
effects on the service state. Indeed, the GET request in Step 2

shows that the user view is correct: the CM resource named
X attempted to be created in Step 1 has not been created.
However, the second PUT request in Step 3 proves that the
service still remembers the failed creation of the CM resource
named X attempted in the first PUT request of Step 1. This
bug is potentially dangerous: an attacker could create an
unbounded number of such “zombie” resources by repeating
Step 1 using many different names, and exceed his/her official
quota since such failed resource creations are (correctly) not
counted towards the user’ resource quota. Yet, they are clearly
remembered (incorrectly) somewhere in the backend service.
Other Example: Eager Resource-Accounting DoS Attack.
After fuzzing another Azure service for about five hours,
we accidentally triggered a severe health degradation for that
service. We summarize here the findings on its root cause.

Our fuzzing tool uses a garbage collector not to exceed
quotas for the cloud resources created during fuzzing. For
instance, if a default quota for a resource type Y is 100, at most
100 resources of that type can be created at any time, and our
garbage collector makes sure that the number of live resources
never exceeds quotas by deleting (using a DELETE request)
resources that are no longer used. Without garbage collection,
our fuzzing tool would typically reach quota limits in minutes
and would not be able to continue state-space exploration.

In this specific Azure service, any PUT request to create a
resource of a specific type, let us call it IM, returns a response
quickly but actually triggers other tasks that take minutes to
complete in the service backend. Similarly, a DELETE request
for an IM resource also returns quickly but also triggers
delete tasks that also take minutes to complete. However,
such PUT and DELETE requests for IM resources update
counters towards quotas eagerly, too quickly, without waiting
for the several minutes actually needed to fully complete these
tasks. As a result, an attacker could create-then-delete quickly
many IM resources without exceeding his/her quota, while
triggering a huge number of backend tasks, hence literally
flooding the backend service. Such a Denial-of-Service attack
was accidentally triggered by our fuzzing tool.

A fix to this vulnerability is to update usage counters
towards quotas for DELETE requests only when all delete
backend operations have been completed, i.e., minutes later
in the case of IM resources. This way, the amount of backend
tasks is still linearly bounded by the official quota, since
subsequent IM resource-creation PUT requests will be blocked
until preceding DELETE requests have been fully completed.

VI. RELATED WORK

Our work extends stateful REST API fuzzing [5]. Given
a Swagger specification of a REST API, this specification
is compiled into a fuzzing grammar, which is then used to
automatically generate sequences of requests that satisfy the
specification. Stateful REST API fuzzing automates the gener-
ation of a fuzzing grammar compared to traditional grammar-
based fuzzing [20], [22], [24] where the user manually writes a
grammar. The BFS and BFS-Fast search strategies are inspired
by test generation algorithms used in model-based testing [27],



[12], [28] for generating minimal test suites that cover an entire
finite-state-machine model of a system under test. This paper
extends stateful REST API fuzzing (i) by introducing a set of
security rules for REST APIs and corresponding checkers for
efficiently testing and detecting violations of these rules; and
(ii) by introducing a new search strategy, BFS-Cheap, which
offers a middle-ground between BFS and BFS-Fast when using
active checkers.

Since REST API requests and responses are transmitted over
the HTTP protocol, HTTP-fuzzers can be used to fuzz REST
APIs. Fuzzers like Burp [7], Sulley [23], BooFuzz [6], or
the commercial AppSpider [4] and Qualys’s WAS [21], can
capture/replay HTTP traffic, parse HTTP requests/responses
and their contents (like embedded JSON data), and then fuzz
those using either pre-defined heuristics [4], [21] or user-
defined rules [23], [6]. Some tools to capture, parse, fuzz, and
replay HTTP traffic have recently been extended to leverage
Swagger specifications in order to parse HTTP requests over
REST APIs and guide their fuzzing [4], [21], [26], [3].
However, these tools do not perform any global analysis of
Swagger specifications and therefore cannot generate new
sequences of requests: their fuzzing is stateless, i.e., restricted
to fuzzing parameter values of individual requests. Therefore,
adding active checkers to stateless fuzzers is problematic. In
contrast, our work extends stateful REST API fuzzing with
active checkers targeting specific REST API rule violations.

Because most HTTP-fuzzers were born as extensions of
traditional web-page crawlers and scanners, they often support
a long list of HTTP-focused properties they can check, such
as checking for proper HTTP-usage in responses and even
checking for cross-site-scripting attacks or SQL-injections
if whole web-pages (with HTML and Javascript code) are
returned as part of the responses. However, for most REST
APIs, responses do not include web-pages, and most of the
aforementioned checking capabilities are irrelevant.

Compared to HTTP-fuzzers and web scanners, our paper
introduces new security rules that are targeted specifically at
REST API usage. These rules are security-related because their
violations might be exploited by a malicious attacker to harm
the health of a service or steal unauthorized information or
resources. In contrast, we do not discuss in this paper how
to check other REST API usage rules [9], such as request
idempotence (i.e., repeating identical requests like GET or
PATCH have no further effect on the outcome), which are
not “exploitable” when violated.

Given the widespread use of REST APIs, there is sur-
prisingly little guidance provided on secure REST API us-
age. Most of the security guidance from organisations like
OWASP [19] (Open Web Application Security Project) or
from books on REST APIs [1] or micro-services [17] is about
managing authentication tokens and API keys. No detailed
guidance is provided regarding REST API input validation
and resource management. To the best of our knowledge, the
four security rules introduced in this paper are new.

In Section III, we used the term active checker from [10]
to denote that our checkers do not simply monitor sequences

of API requests and their responses as in traditional runtime
verification [8], [11], but also generate new tests specifically
aimed at triggering rule violations. Similarly to [10], we use
multiple independent security checkers simultaneously. But
unlike [10], we do not use symbolic execution, constraint
generation and solving in order to generate new tests. Indeed,
the inner workings of the services we test are invisible to
our fuzzing tool and its checkers, which only see REST
API requests and responses. Since cloud services are usually
complex distributed systems whose components are written
in different languages, general symbolic-execution-based ap-
proaches seem problematic, but it would be worth exploring
this option further in future work.

In practice, the main technique used today to ensure the
security of cloud services is penetration testing, or pen testing
for short, which means security experts review the architecture,
design, and code of cloud services from a security perspective.
Since pen testing is labor intensive, it is expensive and limited
in scope and depth. Fuzzing tools and security checkers,
like those discussed in this paper, can partly automate the
discovery of specific classes of security vulnerabilities, and
are complementary to pen testing.

VII. CONCLUSION

We introduced four security rules that capture desirable
properties of REST APIs and services. We then showed how a
stateful REST API fuzzer can be extended with active property
checkers that automatically test and detect violations of these
rules. So far, we have fuzzed nearly a dozen production Azure
and Office-365 cloud services using the fuzzer and checkers
described in this paper. In almost all cases, our fuzzing was
able to find about a handful of new bugs in each of these
services. About two thirds of those bugs are “500 Internal
Server Errors”, and about one third are rule violations reported
by our new security checkers. We reported all these bugs to
the service owners, and all have been fixed.

Indeed, violations of the four security rules introduced in
this paper are clearly potential security vulnerabilities. The
bugs we found have all been taken seriously by the respective
service owners: our current bug “fixed/found” ratio is nearly
100%. Moreover, it is safer to fix these bugs rather than risk
a live incident – provoked intentionally by an attacker or
triggered by accident – with unknown consequences. Finally,
it helps that these bugs are easily reproducible and that our
fuzzing approach reports no false alarms.

How general are these results? To find out, we need to
fuzz more services through their REST APIs and check
more properties to detect different kinds of bugs and security
vulnerabilities. Given the recent explosion of REST APIs for
cloud and web services, there is surprisingly little guidance
about REST API usage from a security point of view. Our
paper makes a step in that direction by contributing four rules
whose violations are security-relevant and which are non-
trivial to check and satisfy.



REFERENCES

[1] S. Allamaraju. RESTful Web Services Cookbook. O’Reilly, 2010.
[2] Amazon. AWS. https://aws.amazon.com/.
[3] APIFuzzer. https://github.com/KissPeter/APIFuzzer.
[4] AppSpider. https://www.rapid7.com/products/appspider.
[5] V. Atlidakis, P. Godefroid, and M. Polishchuk. RESTler: Stateful REST

API Fuzzing. In 41st ACM/IEEE International Conference on Software
Engineering (ICSE’2019), May 2019.

[6] BooFuzz. https://github.com/jtpereyda/boofuzz.
[7] Burp Suite. https://portswigger.net/burp.
[8] D. Drusinsky. The Temporal Rover and the ATG Rover. In Proceedings

of the 2000 SPIN Workshop, volume 1885 of Lecture Notes in Computer
Science, pages 323–330. Springer-Verlag, 2000.

[9] R. T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD Thesis, UC Irvine, 2000.

[10] P. Godefroid, M. Levin, and D. Molnar. Active Property Checking. In
Proceedings of EMSOFT’2008 (8th Annual ACM & IEEE Conference
on Embedded Software), pages 207–216, Atlanta, October 2008. ACM
Press.

[11] K. Havelund and G. Rosu. Monitoring Java Programs with Java
PathExplorer. In Proceedings of RV’2001 (First Workshop on Runtime
Verification), volume 55 of Electronic Notes in Theoretical Computer
Science, Paris, July 2001.
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