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0. INTRODUCTION

M.A. Aizerman stated a conjecture in 1949 [1] that immediately attracted attention of many scientists
prominent in the field of control theory and differential equations [2–4]. The conjecture is as follows.
Consider a system with a scalar nonlinearity

(0.1)

where P is the constant n × n-matrix, q and r are constant n-dimensional vectors, * is the transposition
operation, and ψ(σ) is a piecewise-continuous scalar function and . Here, the solution of system (0.1)
is taken in A.F. Filippov sense [5]. Suppose all linear systems (0.1) with

(0.2)

are asymptotically stable. Is system (0.1) with any nonlinearity ψ(σ) that satisfies the condition

globally stable (i.e., the zero solution of system (0.1) is asymptotically stable and any solution tends to zero
when )?

I.G. Malkin [6], N.P. Erugin [7], and N.N. Krasovskii [8] solved the Aizerman conjecture completely
for n = 2 in 1952. Here, there is always a positive solution of the Aizerman conjecture for n = 2 except when

the matrix  has a multiple double zero eigenvalue and

N.N. Krasovskii showed [8] that if all these conditions are met, system (0.1) possesses the solutions
tending to infinity. It was the first counterexample to the Aizerman conjecture, which was then generalized
to systems (0.1) of an arbitrary order [9–12].
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The modification of M.A. Aizerman conjecture proposed by R.E. Kalman [13] in 1957 is as follows.
Suppose ψ(σ) is a piecewise differentiable function1 and

at differentiability points. Is system (0.1) globally stable if all linear systems (0.1) with , 
are asymptotically stable?

Since the Krasovskii counterexample is obviously eliminated for n = 2, the Kalman conjecture has a
positive solution for n = 2. It is shown in [14] that frequency stability criteria yield a positive solution to
the Kalman conjecture for n = 2 and 3. Generalization of the R.E. Kalman conjecture for multidimen-
sional nonlinearity is known as the Markus-Yamabe conjecture [15].

Suppose the Jacobian matrix  for the system

(0.3)

has all eigenvalues with negative real components for any . Is system (0.3) globally stable? This con-
jecture has a positive solution for n = 2 [16–18] and a negative solution in the general case when n ≥ 3. Thus,

while it allows for the unbounded solution  , the polynomial system

considered in [19] has the Jacobian matrix with three eigenvalues equivalent to –1.

In 1958, V.A. Pliss [9] developed a method for constructing three-dimensional nonlinear systems that
meet the Aizerman condition and have periodic solutions. This method was then generalized to systems (0.1)
of arbitrary dimension [20, 21]. However, classes of these systems did not meet the Kalman condition.

In this work, we describe the current situation in studying the Aizerman and Kalman conjectures and
a new approach to solving them that is based on computational algorithms, where the first step consists in
applying the modified harmonic linearization method. The classical harmonic linearization method (the
method of harmonic balance, the method of describing functions) is quite common and frequently used
to analyze nonlinear automatic control theory systems. It is not strictly mathematically substantiated and
is an approximate method of analyzing control systems [22–32]. Ya.Z. Tsypkin proposed one of the first
examples of the harmonic linearization method yielding incorrect results [33].

To describe a very simple connection between the harmonic linearization method and the Aizerman
conjecture, we recall the standard procedure of this method for systems (0.1) and introduce the transfer
function

where p is a complex variable. To find the harmonic oscillation , which is an approximate solution

of system (0.1), we first give a harmonic linearization coefficient k so that the matrix of the linear system

 (0.4)

has a pair of purely imaginary eigenvalues  , with the rest of its eigenvalues having negative
real components. Here, we assume that such k exists.

In practical problems, the transfer function W(p) is used to find the values k and ω0: first we find the
variable ω0 from the equation

then we calculate k by the formula

1 In other words, it is the function that has a finite number of discontinuities of the first order on any interval and is differentiable
on the continuity intervals.
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If such k and ω0 exist, the amplitude a can be found from the equation

We apply the described procedure to the Aizerman conjecture. Obviously, the condition  is
not satisfied in this case. Then, for any nonzero values σ, one of the estimates

holds.

Hence, for all a ≠ 0, the inequality

(0.5)

holds. Thus, by the harmonic linearization method, system (0.1) has no periodic solutions under the
Aizerman (and Kalman) conditions. However, the results of V.A. Pliss and his followers [20, 21] contra-
dict these non-strict conclusions.

The above mentioned facts have led to many decades of attempts to find classes of systems, where the
harmonic linearization method (and its various generalizations) turned out to be accurate and yielded true
results. Being among the first works in this direction, publications [34, 35] used the variant of the classical
method of small parameter. In what follows, this direction was heavily criticized by saying that “these
methods of small parameter assume that the initial system hardly differs from a linear system with the proper
generating frequency. One cannot make such assumptions within the automatic control theory since the sys-
tem is a fortiori non-conservative and stability conditions are met in linear approximation with sufficient
margin” [36]. With the criticism taken into account, other methods of introducing the small parameter
began to be developed based on the filter hypothesis [37–39].

Advances in numerical methods, computer science and applied bifurcation theory allow us to return
to earlier ideas of applying methods of small parameter and method of harmonic linearization in dynamic
systems and consider them from new points of view. Here, we modify and justify the harmonic lineariza-
tion method to create search algorithms for oscillations in the Aizerman and Kalman conjectures. Such
oscillations are hidden in the sense that their attraction domains do not include neighborhoods of stationary
states. Therefore, one cannot set up computational procedures based on studying the transient process
starting in the neighborhood of non-stable equilibrium state and coming to the attracting oscillating
mode. It is this oscillation excitation that is typical of self-excited oscillators and other classical self-oscil-
lating systems [40–44].

Harmonic linearization method, classical method of small parameter and numerical methods applied
together allow reducing calculation of periodic modes to a multi-step procedure, with the harmonic lin-
earization method applied at its first step. We describe this procedure, mainly following [45–48]. We
rewrite system (0.1) as

(0.6)

where . Since we are interested in periodic solutions of system (0.6), it seems natural to

introduce a finite sequence of functions  so that the graphs of neighboring functions

ϕj(σ) and ϕj + 1(σ) does not differ much in a sense, and the function ϕ0(σ) is small and . The
fact that the function ϕ0(σ) is small allows us to apply and justify, in this case, the harmonic linearization
method for the system

(0.7)

finding the stable periodic solution x0(t) close to the harmonic solution. All points of this stable periodic
solution are either in the attraction domain of the stable periodic solution x1(t) of system

(0.8)

0 02 2

2
0 0 0

0 0

( cos( ))cos( ) (cos( ))a t t dt ka t dt

π/ω π/ω

ψ ω ω = ω .∫ ∫
∈ µ ,µ1 2( )k

2 2
( ) ( )k kσ < ψ σ σ ψ σ σ < σ .or

02

2
0 0 0

0

( ( cos( )) cos( ) ( cos( )) ) 0a t a t k a t dt

π/ω

ψ ω ω − ω ≠∫

= + ϕ ,*0 ( )
d

dt

x
P x q r x

ϕ σ = ψ σ − σ( ) ( ) k

ϕ σ ,ϕ σ , ,ϕ σ0 1
( ) ( ) ( )

m
…

ϕ σ = ϕ σ( ) ( )
m

= + ϕ ,*
0

0 ( )
d

dt

x
P x q r x

= + ϕ *0 ( )
jd

dt

x
P x q r x



514

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 50  No. 4  2011

BRAGIN et al.

with j = 1 or there is bifurcation of loss of stability and the periodic solution disappears when passing from
system (0.7) to (0.8) with j = 1. In the first case, we can numerically obtain x1(t) by originating the trajec-
tory of system (0.8) with j = 1 from the initial point x0(0). Starting at the point x0(0), after the transient
process the computational procedure comes at the periodic solution x1(t) and calculates it. This requires
rather big interval [0, T], on which calculation is performed.

After x1(t) is calculated, we can move to system (0.8) with j = 2 and set up a procedure to find the peri-
odic solution x2(t) by starting the trajectory of system (0.8) with j = 2 from the initial point x1(T) that
approaches the periodic trajectory x2(t) as t grows. Going on with this procedure and subsequently obtain-

ing xj(t) using the trajectory of system (0.8) with the initial conditions , we either arrive at calcula-
tion of the periodic solution of system (0.8) with j = m (i.e., the initial system (0.6)) or observe that there
is bifurcation of loss of stability and the periodic solution disappears at the certain step.

Note that, in addition to hidden periodic oscillations, the described algorithm allows us to find hidden
strange attractors a basin of attraction of which also does not contain neighborhoods of equilibria (unlike clas-
sical attractors such as, for instance, in Lorenz [49], Rossler [50], etc. systems, where linearized systems,
in the neighborhoods of equilibrium states, have eigenvalues with positive real component and trajectories
going out of these equilibrium states and attracted by the attractor). In this work, we obtain hidden strange
attractors as we analyze nonlinear Chua’s circuits.

1. SUBSTANTIATION FOR THE HARMONIC LINEARIZATION METHOD

1.1. Reducing the System

Using the nonsingular transformation x = Sy, we can reduce system (0.7) with the nonlinearity ϕ0(σ)
to the form (see, for instance, [48, 51])

(1.1)

where y1, y2 are scalar variables, y3 is the (n – 2)-dimensional vector, b3 and c3 are (n – 2)-dimensional

vectors, b1 and b2 are real numbers, and A3 is a matrix of dimension  with all its eigenvalues
having negative real components.

Without loss of generality, we assume that for the matrix A3 there exists a positive number d > 0 such that

(1.2)

We write the transfer function of system (0.7)

(1.3)

and the transfer function of system (1.1)

(1.4)

where I is the unit matrix, η and θ are some real numbers, Q(p) is a stable polynomial of the power (n – 2),
R(p) is the polynomial of the power less than (n – 2). We assume that the polynomials R(p) and Q(p) have
no common roots. Since systems (0.7) and (1.1) are equivalent, their transfer functions coincide. Hence,
we have

(1.5)
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CONCLUSIONS

In this work, we described the algorithms for finding oscillations in nonlinear dynamic systems. The
first step of these algorithms consists in applying modified harmonic linearization methods (method of
harmonic balance, method of describing functions). Special Poincare maps were used to give their strict
mathematical substantiation. Subsequent steps of the proposed algorithms rely on the modern applied
theory of bifurcations and numerical methods of solving differential equations. Efficiency of the algo-
rithms was demonstrated by constructing counterexamples to the Aizerman, Kalman, and Markus-Yam-
abe conjectures. Such algorithms help find and localize hidden strange attractors [88] as well as hidden
periodic oscillations. One of these algorithms was used to discover, for the first time, a hidden strange
attractor in the dynamic system describing a nonlinear Chua’s circuit, viz. an electronic circuit with non-
linear feedback. Note that L. Chua stated in [70] that there are no such attractors.
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