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Abstract

In this paper we generalize conventional panel data models by allow-
ing for, possibly multiple, individual effects that are subject to random
structural breaks. We assume that the data have been collected for a large
number (N) of cross-sectional units (‘individuals’) and a fixed number (T )
of time periods. The pattern of the breaks, i.e., the timing, the number
and the magnitude(s) of the breaks, can be different across the individuals.
The breaks, that is, the changes in the individual effects may be correlated
over time, e.g., they may have a factor structure with correlated heteroge-
neous factor loadings or follow MA processes, possibly of different orders.
Furthermore, just like the individual effects may be correlated with some of
the regressors, the breaks may be correlated with changes in the regressors.
The LSDV estimator is not consistent for a static panel data model

with breaks in the individual effects that are correlated with the regressors.
However, such models with correlated breaks can be consistently estimated
by the IV method or GMM.
We distinguish between individual effects with common correlated breaks

and those with individual correlated breaks. The former can be modelled
through an identifiable factor structure. We consider estimation of models
that contain both time-varying individual effects with an identifiable factor
structure and individual effects with individual correlated breaks. To deal
with such models we generalize an estimation algorithm for factor models
proposed in Kruiniger (2008). We also discuss several tests for the absence
of various kinds of correlated breaks.
Finally, we consider GMM estimation of dynamic panel data models

with breaks in the individual effects.

∗Mile End Road, London E1 4NS, United Kingdom; E-mail: h.kruiniger@qmul.ac.uk.



Keywords: panel data, structural breaks, correlated breaks, individual
breaks, common breaks, latent variables, correlated individual effects, mul-
tiple time-varying individual effects, factor models, GMM, dynamic panel
data models.

JEL Classification: C11, C14, C23.

1. Introduction

In the last few decades empirical research in especially microeconomics but also
in other areas has greatly benefitted from the increasing availability of panel data
sets. One of the attractive features of panel data is that in regression analysis they
allow one to take unobserved ‘individual’ effects into account that are correlated
with (some of) the observed explanatory variables. This is usually done either
by including an individual specific constant term in the model (fixed effects) or
by adding a time-invariant individual specific random term and some functions
of the regressors, e.g. time series averages of some of the regressors, to the model
((correlated) random effects).1

In this paper we will argue that one can in fact consistently estimate more
general panel regression models that allow for random changes in the latent indi-
vidual effects that are correlated with changes in the regressors. That is, one can
estimate models with correlated (structural) breaks in the individual effects.2 The
timing, the number and the magnitude(s) of the changes in the effects may differ
across the individuals, are not known or specified, and essentially unrestricted.3

1Since the seminal paper by Mundlak (1961), numerous papers have proposed economet-
ric methods for estimating models for panel data, e.g. Wallace and Hussain (1969), Mundlak
(1978), Hausman and Taylor (1981), and Chamberlain (1982) for static linear panel data mod-
els, Balestra and Nerlove (1966), Anderson and Hsiao (1981, 1982), Holtz-Eakin, Newey and
Rosen (1988), Arellano and Bond (1991), and Ahn and Schmidt (1995) for dynamic panel data
models, Chamberlain (1980) for panel models with binary data, Honoré (1992) for truncated and
censored regression models for panel data, Nijman and Verbeek (1992) for panel data models
with selectivity, and Chamberlain (1992) and Wooldridge (1999) for other nonlinear panel data
models. Horowitz and Markatou (1996) and Li and Stengos (1996) considered semiparametric
estimation of panel data models.

2Strictly speaking, referring to the changes in the individual effects as (random) structural
breaks constitutes an abuse of terminology since we will view the individual effects as random
(latent) variables rather than as parameters; hence it would be better to say that the individual
effects are time-varying. However, in general the individual effects change infrequently and
resemble parameters that are subject to random structural breaks. Because of this analogy it
is convenient to use the structural breaks terminology.

3However, we do (need to) make a number of assumptions about the variances of the breaks,
the autocovariances of the breaks and the covariances of the breaks with the instruments (e.g.
lagged values of the regressors), such as the existence of the variances of the breaks and the lack
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One can even have a correlated break in the effects in every period. We assume
that only the individual effects may exhibit breaks and that the breaks are inde-
pendent across the ‘individuals’. The asymptotic properties of the estimators for
the common parameters are derived by assuming that N → ∞ and T is fixed.
We do not estimate the break dates or the number of breaks or their magnitudes.
The individual effects with correlated breaks that are introduced in this paper

are different from the time-varying correlated individual effects that have been
considered by Kiefer (1980), Holtz-Eakin et al. (1988), and more recently by Ahn,
Lee and Schmidt (2001, 2006), Bai (2005) and Pesaran (2006). In these papers
time-invariant individual effects, gi, are multiplied by common time effects, θt,
leading to giθt. Such factor structures are sometimes used to model strong cross-
sectional dependence, cf. Andrews (2005). However, they can also be used to
model (possibly multiple) common correlated breaks, i.e., synchronous breaks in
the individual effects (possibly at multiple points in time) that are correlated with
changes in the regressors. Such breaks (changes) in the effects can be uncorrelated,
imperfectly correlated or perfectly correlated over time, i.e., uncorrelated / (im-)
perfectly correlated with common correlated breaks that occur in other periods.
Common breaks at different points in time are perfectly correlated if for each
‘individual’ i ≤ N the breaks affect the same factor loading, say the p − th
factor loading gi,p; they are imperfectly correlated over time if the the breaks
affect different factor loadings, say gi,p and gi,q, with Cov(gi,p, gi,q) �= 0, p �= q and
i ≤ N. Note that not all correlated breaks are or even can be modelled as common
correlated breaks, that is, as a factor structure that is identifiable.4 Therefore we
will sometimes use the phrase ‘individual correlated breaks’ for correlated breaks
that are not (or cannot be) modelled through an (identifiable) factor structure.
From an empirical point of view the generalization of the traditional panel

data model with time-invariant individual effects to panel data models that in-
clude individual effects with correlated breaks is useful. Consider the following
examples. When estimating production functions with panel data, one typically
includes individual effects to capture unobserved technology and/or management
effects. These effects tend to be correlated with the inputs. Both (the quality of)
the technology and the management of a firm (or farm) may well change during
the sample period and any such changes are likely to be correlated with changes
in the inputs. When estimating earnings, labour supply or consumption models,
the individual effects may represent unobserved personal attributes and/or socio-

of correlation between the breaks and the instruments. The assumptions we make are natural
and often rather weak or the weakest that can be made.

4For example, if a factor structure is used to model correlated breaks in the effects that occur
in every period in the sample and are uncorrelated or imperfectly correlated over time, then it
is unidentified.
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economic conditions like ability, skills, training, relevant work experience, health,
‘marital status’, family composition, (local) economic conditions, social environ-
ment et cetera. These attributes/circumstances may well change over time and
are often correlated with changes in observed explanatory variables like age, edu-
cation, (family) income et cetera.
The presence of correlated breaks in the individual effects has implications for

the choice of the estimation strategy. Conventional estimators for the slope para-
meters in static panel regression models with correlated time-invariant individual
effects, such as the LSDV (or Within) estimator and the Correlated Random Ef-
fects GLS estimator, will no longer be consistent when the individual effects are
time-varying and the changes in the effects are correlated with changes in (some
of) the regressors. However, in that case it may still be possible to consistently es-
timate the model in first-differences by the IV method or GMM using lagged levels
or lagged first-differences of the regressors as instruments even without knowing
the number of breaks or when and for which ‘individuals’ they occur.
The traditional panel regression models with time-invariant individual effects

can be regarded as special cases of models with time-varying correlated individual
effects such as effects with correlated breaks. The extra structure of the traditional
models gives rise to the availability of additional moment conditions. Therefore
one can test for the absence of correlated breaks in the individual effects by
employing a Hausman-type test or a Sargan-Difference test.
In the simplest version of a panel regression model with random structural

breaks in the individual effects, the changes in the individual effects are serially
uncorrelated. However, if the ‘structural changes’ take place in a gradual manner,
then it may be appropriate to model them as moving average (MA) processes.
A model may even contain multiple individual effects that differ in terms of the
orders of the MA representations of their first-differences. If certain conditions
are met, then it is possible to consistently estimate the (maximum) number of in-
dividual effects with individual correlated breaks, which is equal to the maximum
of the orders of the MA models for the correlated breaks plus one.
The panel models with correlated breaks that have been introduced above

are special cases of models that contain both correlated individual effects that
have a factor structure and individual effects that exhibit individual correlated
breaks. We consider estimation of models that include both kinds of time-varying
individual effects. Among other things we describe an estimation algorithm based
on Kruiniger (2008) for models that include a factor structure. We also propose a
test of H0a : no common correlated breaks that are uncorrelated over time and no
individual correlated breaks versus H1a : not H0a, and a sequential test of H0b : no
individual correlated breaks versus H1b : not H0b. Both tests allow for common
correlated breaks (also under their null hypotheses) that are correlated over time.
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However, the sequential test also allows for an increasing but limited number of
common correlated breaks that are uncorrelated over time.
The usual IV and GMM estimators for the panel AR(1) model that employ

lagged differences of the data as instruments for the model in first-differences are
still consistent when the changes in the individual effects are correlated with the
changes in (some of) the regressors other than the lagged dependent variable; even
lagged levels of the data could serve as instruments as long as the changes in the
individual effects are not correlated with those lagged levels.
The plan of the paper is as follows. In section 2 we consider estimation of

static panel data models with individual correlated breaks that are serially un-
correlated. In section 3 we generalize the static panel data model by allowing for
(possibly multiple) individual effects with breaks that follow MA processes of dif-
ferent orders, we discuss estimation of these more general models and we describe
a method for determining the (maximum) number of different individual effects.
In section 4 we consider estimation of even more general static models that also
include (possibly multiple) time-varying correlated individual effects that have a
factor structure. We also discuss several tests for the absence of various types of
correlated breaks. Section 5 considers estimation of the panel AR(1) model with
random structural breaks. In section 6 we present an empirical example where it
is important to allow for time-varying correlated individual effects. In section 7
we conduct some simulation experiments. Section 8 concludes.

2. Estimation of static panel data models with random struc-

tural breaks

In this section we will consider estimation of the following static linear panel data
model with random structural breaks in the individual effects:

yi,t = β ′xi,t + εi,t, i = 1, ..., N, t = 1, ..., T , (2.1)

εi,t = fi,t + ui,t,

△fi,t = fi,t − fi,t−1 = vi,t, for t ≥ 2.

The panel covers N cross-sectional units (individuals) and T time periods. We
assume that N is large and T is small so that asymptotic properties of estimators
will be derived assuming that N → ∞ while T remains fixed. The dependent
variable is yi,t and xi,t is a K−vector of time-varying regressors. The idiosyncratic
errors are denoted by ui,t and the unobserved individual effects are denoted by
fi,t. For convenience, we assume here that the cross-sectional averages of the data
are zero. Alternatively, we could include additive time dummies in the model, see
section 4.
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Let X ti,s = (x′i,s ... x′i,t), Xti = X ti,1, Xi = XTi , ∆Xti,s = (∆x′i,s ... ∆x′i,t),
∆X ti = ∆X ti,2, F ti = (fi,1 ... fi,t), and Fi = F Ti . Let Σ = E[(Xi Fi)

′(Xi Fi)] =[
ΣXX Σ′

FX

ΣFX ΣFF

]
. In addition, let uti = (ui,1 ... ui,t) and ui = uTi .

We make the following Standard Assumptions [SA]:

SA.1: Wi = (Xi Fi ui) is i.i.d. over i, and E(Wi) = 0, (2.2)

SA.2: 0 < E(u2i,t) = σ2t <∞, for t ≥ 1, (2.3)

SA.3: Σ is finite, det(ΣXX) > 0, (2.4)

det[E(∆xi,t−1∆x′i,t)] ≡ dt �= 0, for t > 2, and
∑T

t=3
dt �= 0,

SA.4: (Xi Fi) is uncorrelated with ui, (2.5)

SA.5: E(vi,t∆xi,t) �= 0, for t ≥ 2, (2.6)

SA.6: E(vi,t∆X t−1i ) = 0, for t > 2, (2.7)

SA.7: E(vi,t∆XTi,t+1) = 0, for 2 ≤ t ≤ T − 1. (2.8)

The individual effects may or may not change over time. Regardless E(vi,t) =
0, t ≥ 2, cf. assumption (2.2). 5 The break dates of the individual effects and the
identities of the individuals for which the effects change in a particular period,
i.e., the values of i and t for which fi,t �= fi,t−1, are assumed to be unknown.
However, according to assumption (2.6) the changes in the fi,t, the vi,t, are con-
temporaneously correlated with the changes in all the elements of the xi,t.

6 This
assumption implies that Pr(fi,t �= fi,t−1) > 0. If the vi,t and the ∆xi,s would be
uncorrelated ∀s, t ∈ {2, ..., T} and ∀i ∈ {1, ..., N}, the vector of slope coefficients,
β, could be consistently estimated by a conventional panel data estimator, e.g.
the Least Squares Dummy Variable estimator. 7

The i.i.d assumption about Wi in (2.2) is standard in the traditional panel
data context where N is large relative to T . One can allow for heterogeneous
distributions by strengthening the assumptions on the moments of theWi = [Xi Fi
ui]. One can also relax the independence assumption, for instance, by allowing for
common factors in the Xi and the Fi with possibly heterogeneous factor loadings

5Given E(ui) = 0, the assumption that the cross-sectional averages of the data are equal
to zero is equivalent to the assumption that both E(Xi) = 0 and E(Fi) = 0. When the model
includes additive time dummies, it is not only possible to allow E(Xi) �= 0 but it is also possible
to recenter the individual effects in every period such that the assumption E(Fi) = 0 still holds
even when the cross-sectional averages of the data are different from zero.

6One can replace (2.6) by the more general assumption that E(vi,t∆xk,i,t) �= 0, for some
k ∈ {1, ...,K} and for some t ∈ {T0, ..., T1} with 2 ≤ T0 ≤ T1 ≤ T. We use (2.6) instead in order
to keep the exposition as simple as possible.

7Nevertheless an optimal GMM estimator for β is in general asymptotically more efficient
than the LSDV estimator.
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(cf. papers cited in the introduction and see section 4 below) or by assuming
that {ui}Ni=1 and/or {vi}Ni=1 are/is strong mixing (cf. Conley, 1999). The strict
exogeneity assumption (2.5) is also standard but stronger than necessary for the
consistency of various estimators for (2.1): in a number of cases assumption (2.5)
can be replaced by the weaker condition that the xi,s and the fi,s are predetermined
with respect to the ui,t:

SA.4′: [X ti F ti ] is uncorrelated with ui,t, for t ≥ 1. (2.9)

For the simple model above identification and estimation of β can be based
on assumptions (2.4), (2.5) or (2.9), (2.7) and possibly (2.8).
Assumptions (2.6)-(2.8) are high level conditions, which are implied by more

primitive conditions. Suppose that the Regressors, the xi,t, obey the following
autoregressive model:

xi,t − δtfi,t = Γt(xi,t−1 − δt−1fi,t−1) + ξi,t, i = 1, ..., N, t = 2, ..., T , (2.10)

which includes the following Assumptions [RA]:

RA.1: xi,1 = δ1fi,1 + ξi,1, (2.11)

RA.2: ξi = (ξ′i,1 ... ξ′i,t) is uncorrelated with Fi.

This model allows for correlation between the regressors and the individual effects.
It follows from (2.10) that ∆xi,t = (Γt− I)(xi,t−1− δt−1fi,t−1) + ξi,t+ δtvi,t+ (δt−
δt−1)fi,t−1. If Γt = Γt−1 = 0, then ∆xi,t = ∆ξi,t + δtvi,t + (δt − δt−1)fi,t−1. Let
δ1 = δ2 = ... = δT �= 0. Then the following Primitive Assumptions [PA]:

PA.1: Pr(vi,t �= 0) > 0, for t ≥ 2, (2.12)

and

PA.2: E(vi,tvi,t−s) = 0, for s = 1, ..., t− 2, t = 3, ..., T, (2.13)

are (necessary and) sufficient for assumptions (2.6) and (2.7) (and (2.8)), respec-
tively, to hold. 8

Assumption (2.7) is a very weak lack of correlation assumption concerning the
changes in the individual effects and the regressors: it only assumes absence of
correlation between the vi,t and the lagged first-differences of the regressors.

9 A
stronger assumption than (2.7) would be that the vi,t are uncorrelated with the
lagged levels of the regressors, i.e.,

SA.6′: E(vi,tX
t−1
i ) = 0, for t ≥ 2. (2.14)

8Conditions (2.12) and (2.13) are still (necessary and) sufficient for assumptions (2.6) and
(2.7) (and (2.8)) to hold if the (xi,t − δtfi,t) follow more general ARMA processes.

9Of course, an even weaker assumption is that E(vi,t∆xi,2) = 0 for t > 2.
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If the levels of the regressors satisfy (2.10)-(2.11), then assumption (2.14) is im-
plied by (2.13) and

PA.3: E(vi,tfi,1) = 0, for t ≥ 2, (2.15)

whatever the values of δ1, δ2, ... , δT.
In the subsection below we consider additional restrictions on the correlations

between the regressors and the individual effects. In the next section we discuss
variations of assumption (2.7).
Finally we will show that under the SA, (2.2)-(2.8), the LSDV (Within or

Covariance) estimator is generally inconsistent for β in model (2.1). The LSDV
estimator is the traditional estimator for static panel data models with time-
invariant correlated effects, see Hsiao (1986). Let us first assume that T = 2.

Then β̂LSDV =
(∑N

i=1 ∆xi,2∆x′i,2
)
−1∑N

i=1(∆xi,2∆yi,2) and

plimN→∞β̂LSDV = β + plimN→∞

(∑N

i=1
∆xi,2∆x′i,2

)
−1∑N

i=1
(∆xi,2∆εi,2)

= β + plimN→∞

(∑N

i=1
∆xi,2∆x′i,2

)
−1∑N

i=1
(vi,2∆xi,2)

�= β, (2.16)

because E(∆xi,2vi,2) �= 0. 10 When T > 2,

plimN→∞β̂LSDV − β = T−1
∑T

t=2
(T − t + 1)(t− 1)ηt, (2.17)

where

ηt = plimN→∞N−1
∑N

i=1
ηi,t

ηi,t = (N−1
∑N

i=1
X̃ ′

i(IT − T−1ιι′)X̃i)
−1(vi,t∆xi,t),

X̃i = (xi,1 ... xi,T )′ and ι is a T -vector of ones. In general, the size of the incon-

sistency of the LSDV estimator, plimN→∞β̂LSDV − β, depends on
- the cross-sectional averages of the relative sizes of the breaks, the ηt, and
- the timing of the structural breaks.

Note that even if ηs = ηt �= 0 for some s �= t, the effects of ηs and ηt on the value
of plimN→∞β̂LSDV − β are different. When at least two of the ηt have different
signs, it is still possible that plimN→∞β̂LSDV = β.

10The Correlated Random Effects GLS estimator of Mundlak (1978) is also inconsistent.
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2.1. Instrumental Variable and GMM estimation

When estimating panel models, a common way of dealing with correlated indi-
vidual effects is to transform the model. First-differencing of the model in (2.1)
yields

∆yi,t = β′∆xi,t + ∆εi,t (2.18)

= β′∆xi,t + vi,t + ∆ui,t.

Given the assumptions in (2.4), (2.9) (or (2.5)), and (2.7) (and (2.8)), all lags (and
leads) of the first-differences of the regressors are valid instruments for estimating
the model in first-differences whether or not a structural break occurs. If we would
know that no break occurs in period t, i.e., vi,t = 0, then xi,t−1 (and xi,t) would
also be (a) valid instrument(s) for (2.18). However, in many applications exact
knowledge about all the individual break dates is not available.
Notice that even though the individual effects change over time, differencing of

the model is still important: the current and lagged differences of the regressors are
not valid instruments for the equations in levels because E(fi,t∆xi,s) = E([fi,1 +∑t
k=2 vi,k]∆xi,s) = E([fi,1 +

∑s
k=2 vi,k]∆xi,s) �= 0 if s ≤ t.

A simple consistent IV estimator for (2.1) is given by

β̂IV =
(∑N

i=1

∑T

t=3
(∆xi,t−1∆x′i,t)

)
−1∑N

i=1

∑T

t=3
(∆xi,t−1∆yi,t). (2.19)

A GMM estimator that is asymptotically more efficient than β̂IV when T > 3
optimally exploits the following moment conditions:

E[∆xi,s(∆yi,t − β ′∆xi,t)] = 0, s = 2, ..., t− 1, t = 3, ..., T. (2.20)

The optimal weight matrix for the moment conditions in (2.20) depends on the
covariance matrices of the Dεi, where εi = (εi,1 ... εi,T )′ and D is a (T − 2) × T
first difference matrix with dk,k+1 = −1, dk,k+2 = 1, k = 1, ..., T − 2, and dk,l = 0

elsewhere. Given a preliminary consistent estimator β̂1 for β, for instance β̂IV , one
can consistently estimate the blocks of the inverse of the optimal weight matrix,
Ω = [ωp,q], by

ω̂0.5(l−1)(l−2)+k, 0.5(t−1)(t−2)+s = N−1
N∑
i=1

∆xi,k∆x′i,s(∆yi,l− β̂
′

1∆xi,l)(∆yi,t− β̂
′

1∆xi,t),

k = 2, ..., l − 1, l = 3, ..., T, s = 2, ..., t− 1, t = 3, ..., T, (2.21)

if the fourth-order moments of ∆Wi exist. This estimator for the optimal weight
matrix allows for serial correlation in the {ui,t}, random structural breaks in the
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{fi,t}, and serial (and cross-sectional) heteroskedasticity of the {ui,t} and the
{vi,t}.
If the regressors are strictly exogenous as in (2.5) and if assumption (2.8) also

holds, then we have the following additional moment conditions for (2.1):

E[∆xi,s(∆yi,t − β ′∆xi,t)] = 0, s = t + 1, ..., T, t = 2, ..., T − 1. (2.22)

Replacing assumption (2.7) by the stronger assumption (2.14) leads to the
following additional moment conditions:

E[xi,1(∆yi,t − β ′∆xi,t)] = 0, t = 2, ..., T. (2.23)

When the autocorrelation of {∆xi,t} is weak, a GMM estimator based on (2.20)
and (2.22) may suffer from a weak instruments problem. If that is the case,
then the availability of lagged levels of the regressors as valid instruments may
be exploited to mitigate the problem. Notice that current and future levels of
the regressors are ruled out as instruments for the equations in first-differences
because E(xi,svi,t) �= 0 if s ≥ t.
Now consider the assumption that

E(fi,1∆xi,t) = 0, for t ≥ 2. (2.24)

This assumption is valid when the levels of the regressors satisfy (2.10)-(2.11) with
δ1 = δ2 = ... = δT , and {fi,t} satisfies (2.15).
Assumption (2.24) in combination with (2.5) implies the following moment

conditions:
E[∆xi,t(yi,1 − β ′xi,1)] = 0, t = 2, ..., T. (2.25)

These moment conditions may allow one to identify and estimate the coefficients
of time-invariant regressors. Assumption (2.24) is very similar to an identification
assumption first considered by Breusch, Mizon, and Schmidt (1989) in the context
of model with time-invariant regressors and correlated time-invariant individual
effects. Notice that current and lagged differences of the regressors are still ruled
out as instruments for the equations in levels because E(fi,t∆xi,s) �= 0 if s ≤ t.
The moment conditions in (2.22) (and (2.25)) use future differences of the

regressors as instruments, whereas the moment conditions in (2.20) (and (2.23))
use only lagged values of the regressors as instruments. Therefore, none of the
moment conditions in (2.20), ((2.23), (2.25)) and (2.22) are redundant.
The moment conditions in (2.20) (and (2.22)) are valid whether or not struc-

tural breaks occur. They do not presuppose any knowledge about the timing of
the structural breaks but only that the breaks are uncorrelated over time. In-
deed these moment conditions are even valid if a structural break occurs in every
period, as would be the case if {fi,t} were, for instance, a random walk process.
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If no structural break occurs additional moment conditions are available and
hence more efficient GMM estimators for β can be constructed. Therefore, one can
formulate various tests for the absence of structural breaks, such as a Hausman test
and a Sargan-Difference test. Even if knowledge about the presence of structural
breaks in the individual effects is immaterial from an economic theory point of
view, these tests may still be useful as diagnostic tests.
When the regressors are strictly exogenous and no structural break occurs,

an efficient GMM estimator optimally exploits E(m1,i,s,t(β)) = E(xi,s(∆yi,t −
β′∆xi,t)) = 0, 1 ≤ s ≤ T and 2 ≤ t ≤ T. Let us denote this estimator by

β̂GMM,NB. A related GMM estimator that is still consistent under random struc-
tural breaks that are uncorrelated over time optimally exploits the moment con-
ditions in (2.20) and (2.22), i.e., E(m2,i,s,t(β)) = E(∆xi,s(∆yi,t − β ′∆xi,t)) = 0,

s �= t with 2 ≤ s, t ≤ T.We will denote this estimator by β̂GMM,RB. Then we can
construct the following Hausman-type test-statistic:

HNB = (β̂GMM,NB − β̂GMM,RB)′[V ar(β̂GMM,RB)− V ar(β̂GMM,NB)]−1 ×
(β̂GMM,NB − β̂GMM,RB). (2.26)

Under the null hypothesis of no structural breaks, HNB ∼ χ2(K).
An alternative test is based on the Sargan-Difference test-statistic:

SDNB =
∑
i
m′

1,i[
∑
i
(m̃1,im̃

′

1,i)]
−1
∑
i
m1,i −

∑
i
m′

2,i[
∑
i
(m̃2,im̃

′

2,i)]
−1
∑
i
m2,i,

(2.27)

where m1,i = m1,i(β̂GMM,NB), m2,i = m2,i(β̂GMM,RB), m̃1,i = m1,i(β̂1,NB) and

m̃2,i = m2,i(β̂1,RB) with m1,i(β) and m2,i(β) vectors comprising the functions
m1,i,s,t(β), 1 ≤ s ≤ T and 2 ≤ t ≤ T , and m2,i,s,t(β), s �= t with 2 ≤ s, t ≤ T ,

respectively, and β̂1,NB and β̂1,RB preliminary consistent estimators for β. Under
the null hypothesis of no structural breaks SDNB ∼ χ2(2(T −1)K). The test with
more degrees of freedom will have less power than the alternative test.
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3. A model with multiple correlated individual effects

Often structural changes take more than one period to complete. For instance, the
adoption of a new technology by a firm or a change in the organisation of the firm
are usually slow processes that involve learning and/or adjustment costs. Also a
change in the international economic or political environment may only gradually
reach its full impact on a national economy. Even if a structural change occurs
rapidly, it may still affect more than one observation if the change starts near
the end of the time interval between two observations. In many of these cases
it seems appropriate to model the changes in the individual effects as moving
average processes and to replace assumption (2.7) by

E(vi,t∆Xt−1−q+ri ) = 0, for t > 2 + q − r, for some q ≥ 0 and r, (3.1)

where q is the maximum order of autocorrelation of the individual processes {vi,t}.
Assumption (3.1) allows for MA processes for the correlated breaks, the vi,t, that
are different across the individuals and/or time. Furthermore, it allows for the
possibility that there is a lag period (r > 0) or a lead period (r < 0) between the
start of the breaks and the start of the correlated changes in the values of the
regressors. 11

Under assumptions (2.9) and (3.1), the following moment conditions in (2.20)
for model (2.1) remain valid:

E[∆xi,s(∆yi,t−β ′∆xi,t)] = 0, s = 2, ...,min(t−1−q+r, T ), t = 2, ..., T. (3.2)

Suppose that the structural change starts in period t, i.e., vi,t �= 0 whereas
vi,t−1 = 0, then E[∆xi,s(∆yi,l − β′∆xi,l)] = 0, s = l − q + r, ..., t − 1 + r, l =
t, ..., t + q − 1 would also be valid. However, in general we do not have precise
information about the start of the structural changes and hence we cannot exploit
these additional moment conditions.
If the correlated breaks follow MA(q) processes, i.e., vi,t =

∑q
k=0 αi,t,kwi,t−k

with αi,t,0 = 1 and q > 0, then it is quite possible that some of the conditions in
(2.8) and (2.24) are not met. For instance, suppose that vi,t �= 0 while vi,t−1 = 0,

11Suppose that vi,t ∼ MA(q) if vi,t �= 0, i.e. vi,t =
∑q

k=0 αi,t,kwi,t−k with αi,t,0 = 1, and
suppose that the structural change begins in period t− q, so that wi,t−q �= 0. [If the structural
change begins in period s with t − q < s ≤ t, then wi,t−k = 0 for k = t − s + 1, ..., q.] Now
the lag period r could be larger than 0 either because E(wi,t−q+pxi,l) = 0 for p = 0, ..., r − 1
and l = 1, ..., t − q + r − 1 while E(wi,t−q+rxi,t−q+r) �= 0, or because E(wi,t−qxi,l) = 0 for
l = 1, ..., t − q + r − 1 while E(wi,t−qxi,t−q+r) �= 0, or because of some combination of these
reasons. Only in the former case the break vi,t can be written as vi,t = v1,i,t + v2,i,t where
v1,i,t ∼ MA(q − r) is a correlated break and v2,i,t ∼ MA(q) is an uncorrelated break. The
difference between the two cases is reflected in the number of ‘leads’ of the first-differences of
the regressors that can serve as instruments when assumption (2.5) holds as well.
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then the covariances between vi,t (= wi,t) and each of xi,t+r, ...., xi,t+q+r may be
different. However, as long as assumption (2.5) holds and

E(vi,t∆xi,s) = 0, for s = t + 1 + q + r, ..., T,

t = 2, ...,min(T − q − r − 1, T ), and

E(fi,1∆xi,t) = 0, for t = 2 + q + r, ..., T, (3.3)

respectively, then we still have the following additional moment conditions: 12

E[(∆yi,t − β ′∆xi,t)∆xi,s] = 0, s = t + 1 + q + r, ..., T,

t = 2, ...,min(T − q − r − 1, T ), and

E[(yi,1 − β′xi,1)∆xi,s] = 0, s = 2 + q + r, ..., T, (3.4)

respectively.
One can test joint hypotheses about the maximum order q of the MA processes

for the correlated breaks and the lag/lead period r by means of a Hausman test
or a Sargan Difference test.
In the sequel we will assume that r = 0 in order to keep the exposition as

simple as possible.
So far we have assumed that all the regressors for an individual are correlated

with one and the same individual effect process {fi,t} and that the changes in all
these regressors are correlated with {∆fi,t}. However, the error term may include
several individual effect processes with correlated breaks that differ from each
other in terms of the maximum order of autocorrelation exhibited by their first-
differences, i.e., the value of q. The error term may, of course, also contain a
conventional individual effect that is constant over time. Thus the model may
have the following composite error term:

εi,t = µi +
∑Q

q=0
fq,i,t + ui,t, where (3.5)

fq,i,t = fq,i,t−1 + vq,i,t, q = 0, ..., Q,

(Xi µi Fi ui) is i.i.d. over i, and E(µi Fi ui) = 0 with

fi,t = (f0,i,t, ..., fQ,i,t) and Fi = (fi,1 ... fi,T ),

ui is uncorrelated with (Xi µi Fi),

E(Xiµi) �= 0,

E(vq,i,t∆xi,t−q) �= 0, for t ≥ q + 2, q = 0, ..., Q,

E(vq,i,t∆X t−1−qi ) = 0, for t > q + 2, q = 0, ..., Q.

12If the adjustment of the regressors takes longer than the adjustment of the correlated indi-
vidual effects, then some of the constant covariance conditions in (3.3) will not hold. In that
case some of the moment conditions in (3.4) are not valid.
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Each individual effect in εi,t may have a different interpretation. For instance,
when estimating farm production functions, µi could be a location effect (soil,
climate) and {f3,i,t} could be a ‘new technology’ effect.
We say that a regressor xk,i,t is correlated with the individual effect {fq,i,s} if

for some t > q + 1, ∆xk,i,t−q = xk,i,t−q −xk,i,t−1−q is correlated with vq,i,t = ∆fq,i,t,
i.e., if E(vq,i,t∆xk,i,t−q) �= 0 for some t > q + 1. A regressor may be correlated
with more than one individual effect. However, for the selection of the lags of
a particular regressor that can serve as instruments for the equations in first-
differences, one only needs to know the maximum of the maximum orders of
autocorrelation, i.e., the maximum of the values of the q’s, of the changes (first-
differences) of the individual effects that are correlated with the changes in that
regressor. If a regressor is only correlated with the time-invariant individual effect
µi, all its leads and lags and contemporaneous values are valid instruments for
the equations in first-differences. Of course, it is also possible that a regressor is
not correlated at all with the composite error term. In that case all leads and
lags and the contemporaneous values of the regressor are valid instruments for
the equations in levels. On the other hand when Q > T − 2, there is at least one
regressor that cannot be used as instrument.
When the number of regressors is fixed, one can consistently select (all the)

valid moment conditions (or instruments) that only involve Yi = (yi,1 ... yi,T )
and Xi by using a sequential testing procedure that is based on the J statistic
for testing overidentifying restrictions, or by using a procedure that is based on
minimizing a criterion function that consists of the J statistic and a bonus term
that rewards the use of more moment conditions, see Andrews (1999) and Andrews
and Lu (2001) for details. The bonus term can be based on the Schwarz (BIC)
or the Hannan-Quinn (HQIC) criterion, see the text after Propositions 4.2 and
4.3 below for examples. When Q ≤ T − 2, one can also use such procedures
to consistently estimate the value of Q, i.e., the maximum of the orders of the
MA models for the correlated breaks, which is equal to the maximum number of
individual effects with correlated breaks minus one.
Let Zsi =

⋃T
t=2 Z

s
i,t be a set of instruments for the system of T − 1 equations of

the model in first-differences where Zsi,t is a subset that contains the instruments
for the equation corresponding to ∆yi,t. The number of sets of instruments con-
sidered in the aforementioned procedures should be chosen as small as possible
otherwise the estimators for Q (and possibly β) may have poor finite sample prop-
erties. Therefore it may be useful to only consider sets that consist of blocks of
instruments that correspond to a minimum value s for the lags of the instruments,
e.g. Zsi , s = 0, 1, 2, ..., (T−2) with Zsi,t = ∆X t−si , s = 0, 1, 2, ..., (t−2), t = 2, ..., T .
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4. A model with common and individual correlated breaks

Individual effects that exhibit individual correlated breaks are different from corre-
lated individual effects that have a common factor structure. We will now consider
a general model whose composite error term includes multiple time-varying indi-
vidual effects of both types. Unlike Ahn et al. (2006), we also allow for additive
time effects in the model. Let ζ = (ζ1 ... ζT )′ be a parameter vector comprising
T (fixed) time effects, let Θ = [θt,p] be a T × P (with P < T ) constant matrix
whose columns are P common factors, Θ1, ...,ΘP , and let gi = (gi,1 ... gi,P ) be a
P -vector of factor loadings. Then the general model reads as

yi,t = β ′xi,t + ζt + εi,t, i = 1, ..., N, t = 1, ..., T, (4.1)

εi,t =
∑P

p=1
gi,pθt,p +

∑Q

q=0
fq,i,t + ui,t, (4.2)

fq,i,t = fq,i,t−1 + vq,i,t, q = 0, ..., Q.

Note that
∑P
p=1 gi,pΘp = Θg′i. We sometimes use the subscript 0 when we need to

distinguish the true value of a parameter from an arbitrary or hypothetical value
of the parameter. For instance, P0 and Θ0 denote the true values of P and Θ.
Recalling that fi,t = (f0,i,t, ..., fQ,i,t) and Fi = (fi,1 ... fi,T ), and letting X̃ = (X̃ ′

1

... X̃ ′

N )′ and Σ = E[(Xi − µX Fi)
′(Xi − µX Fi)] with µX = E(Xi), we make

the following Standard Assumptions about the General model [GSA]:

GSA.1: (Xi gi Fi ui) is i.i.d. over i, and E(gi Fi ui) = 0, (4.3)

GSA.2: 0 < E(u2i,t) = σ2t <∞, for t ≥ 1, (4.4)

GSA.3: 0 < E(g2i,p) = τ 2p <∞, for p = 1, ..., P0, (4.5)

GSA.4: Σ is finite, det(ΣXX) > 0, (4.6)

GSA.5: ui is uncorrelated with [Xi gi Fi], (4.7)

GSA.6: rank(Θ0) = rankE(X ′

igi) = P0, (4.8)

GSA.7: (X̃ IN ⊗Θ0) is of full column rank, (4.9)

GSA.8: E(vq,i,t∆xi,t−q) �= 0, for t ≥ q + 2, q = 0, ..., Q, (4.10)

GSA.9: E(vq,i,t∆X t−1−qi ) = 0, for t > q + 2, q = 0, ..., Q. (4.11)

Below we will consider estimation of this general model and various tests of
common versus individual correlated breaks.
Note that if gi and Θ satisfy GSA (with Θ0 replaced by Θ and P = P0),

then so do g̃i = giR
′ and Θ̃ = ΘR−1, where R is an arbitrary nonsingular P × P

matrix. Moreover Θg′i = Θ̃g̃′i. Therefore, apart from the conditions in (4.8) and
(4.9), which imply that dim(gi) = P0 and rankE(g′igi) = dim(gi), some additional
restrictions on the gi and the parameters in Θ are required in order to identify
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the elements of Θ. One possible parametrization of Θ is Θ = [IP Θ′

∗∗
]′ where

Θ∗∗ is an unrestricted (T − P )× P matrix, cf. Ahn et al. (2006). However, this
parametrization is overly restrictive as it rules out that Θp,p = 0 for some or all
p ∈ {1, ..., P}. Another possible parametrization is E(g′igi) = IP and

Θ = [Θ′

∗
Θ′

∗∗
]′ where (4.12)

Θ∗ is a lower triangular P × P matrix and

Θ∗∗ is an unrestricted (T − P )× P matrix.

The latter parametrization of Θ allows any row in Θ to equal zero. However,
this parametrization is not practical for estimation as it relies on imposing the
restrictions E(g′igi) = IP , which is not straightforward. A solution to this problem
is to replace the 0.5P (P +1) restrictions on E(g′igi) by 0.5P (P +1) orthonormality
restrictions on Θ. This leads to our preferred parametrization: rankE(g′igi) = P
and Θ = [Θ′

∗
Θ′

∗∗
]′ with

Θ′Θ = IP . (4.13)

These restrictions uniquely determine Θ up to the signs of the columns. However,
knowledge about the signs of the factors is immaterial.
Most of the conditions in GSA are similar to those in SA, which have al-

ready been discussed in section 2. The second assumption in (4.6) rules out
time-invariant regressors and regressors that are constant across individuals. The
coefficients of such regressors are not identified when the model contains addi-
tive time effects, ζ, and/or constant correlated individual effects. We now discuss
the assumptions that are specific to the individual effects with a common fac-
tor structure. The assumption E(gi) = 0 in (4.3) enables identification of ζ.
The assumptions in (4.8) and (4.9) are also identification conditions. The as-
sumption rank(Θ0) = P0 in (4.8) stipulates that the common factors in Θ0 are
linearly independent. The assumptions rank(Θ0) = P0 and rankE(g′igi) = P0
taken together imply that there exist no g̃i and Θ̃ such that Θ̃g̃′i = Θ0g

′

i and
dim(g̃i) < P0. On the other hand there exist infinitely many factor structures Θ̃g̃′i
with rankΘ̃ = dim(g̃i) > P0 such that Θ̃g̃′i = Θ0g

′

i. That is, there are infinitely
many (T × P ) matrices Θ̃ with rankΘ̃ = P > P0 for each of which there exists
a matrix R such that Θ̃R = Θ0. Putting g̃′i = Rg′i, it immediately follows that
Θ̃g̃′i = Θ0g

′

i. Observe that although rankΘ̃ = dim(g̃i) > P0, rankE(g̃′ig̃i) = P0.
Thus using more than P0 linearly independent factors leads to a singular covari-
ance matrix for the corresponding factor loadings. Note also that amongst all
the equivalent factor structures that satisfy the restrictions rankE(g̃′ig̃i) = P0 and
Θ̃ = [Θ′

∗
Θ′

∗∗
]′ with Θ̃′Θ̃ = Idim(g̃i), Θ0g

′

i is the only factor structure with P0
factors, i.e., the smallest number of linearly independent factors. The assump-
tion rankE(X ′

igi) = P0 is another identification condition that requires that the
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loadings of all the factors in Θ0 are correlated with the regressors. If it were the
case that E(X ′

igi) < P0, then some of the columns of Θ would not be identi-
fied unless additional restrictions had been imposed on the covariance matrix of
the ui, V ar(ui). Note that a possible constant correlated individual effect would
be included in Θ0g

′

i. Finally, assumption (4.9) rules out certain types of perfect
multicollinearity, see Ahn et al. (2006).
We will now discuss GMM estimation of β, ζ andΘ in the model given by (4.1),

(4.2) and the GSA in (4.3)-(4.11) with fq,i,t = 0 for all possible values of q, i and t,
(‘Q = −1’) i.e., the model without individual effects that are subject to correlated
breaks. We will also impose the restrictions on Θ given in (4.12) and (4.13).
We will assume that P0 is known and that P = P0. In reality P0 is unknown.
Below we discuss how P0 can be consistently estimated. Our GMM estimator uses
(lagged and possibly leading values of) the regressors as instruments. Since the
factor loadings are correlated with the regressors by assumption (4.8), we need
to transform the model to obtain an error term that is uncorrelated with the
instruments. Define the following (T × T ) matrix

H(θ) = IT −ΘΘ′, (4.14)

where θ = vec(Θ) is a vector comprising the TP−0.5(P−1)P elements of Θ = [Θ′

∗

Θ′

∗∗
]′. Note that under (4.13) H(θ) is an idempotent matrix with H(θ)Θ = 0 and

rank T − P. Let H(θ) be a ((T − P )× T ) matrix comprising T − P rows of H(θ)
such that rankH(θ) = T − P. The matrix H(θ) also depends on all the elements
of θ and H(θ)Θ = 0.
Let yi = (yi,1 ... yi,T ). Assumption (4.3) implies that E(Θ0g

′

i + u′i) = 0. After
adding the assumption that the regressors are strictly exogenous, we also have
E(Xi ⊗ (H(θ0)(Θ0g

′

i + u′i))) = 0. This suggests that estimation of δ = (β′ ζ ′ θ′)′

may be based on the following moment conditions

E(m1,i(δ)) = E(Zi ⊗ (H(θ)(y′i − X̃ ′

iβ − ζ))) = 0, (4.15)

E(m2,i(δ)) = E(y′i − X̃ ′

iβ − ζ) = 0, (4.16)

and the restrictions on Θ given in (4.12) and (4.13), where Zi is a subvector of Xi
or the vector Xi itself. If (T − P )× dim(Zi) ≥ dim(θ)− 0.5P (P + 1) + K (which
equals (T −P )P + K), then the restrictions in (4.12) and (4.13), P = P0 and the
assumptions (4.8) and (4.9) guarantee that β0, ζ0 and θ0 are the unique solutions
of (4.15) and (4.16). Note that (T −P )×dim(Xi) = (T −P )TK ≥ (T −P )P +K
so that in principle there are enough moment conditions available for identification
of δ0. In case ζ0 is in the span of Θ0 so that H(θ)ζ = 0, the moment conditions
in (4.15) can be used to estimate β and those in (4.16) can be used to estimate ζ.
Direct GMM estimation of δ based on (4.15), (4.16), (4.12) and (4.13) may

be cumbersome due to the fact that both (4.15) and (4.13) are nonlinear in the
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elements of θ.We will now describe an algorithm that will be an important ingre-
dient of an indirect but computationally easier estimation method for δ that we
discuss subsequently and is based on Kruiniger (2008). We call a ((T − P )× T )
matrix Π = [πs,t] uppertriangular if ∀s ∃ts such that πu,ts = 0 ∀u > s and πu,t = 0
∀u ≥ s and ∀t < ts. This definition allows for πs,ts �= 0 and πs,ts = 0. When
πs,ts �= 0 ∀s, Π has full rank. It is easily verified that for any T × P matrix Θ
that satisfies the restrictions in (4.12) and (4.13) there exists an uppertriangular
((T −P )× T ) matrix of full rank, say Π, that satisfies ΠΘ = 0 and has rows that
contain up to P + 1 nonzero elements and satisfy the normalisation restrictions

π′sπs = 1 ∀s, and (4.17)

∀s ∃ts such that πs,ts > 0 and πs,t = 0 ∀t < ts,

where π′s is the s-th row of Π.13 On the other hand, any uppertriangular ((T −
P ) × T ) matrix Π of full rank whose rows satisfy (4.17) will uniquely determine
(up to their signs) the columns of a T×P matrix Θ that satisfies (4.12) and (4.13)
via the restrictions ΠΘ = 0. A useful algorithm for finding an uppertriangular
((T −P )×T ) matrix Π of full rank that satisfies (4.17) and ΠΘ0 = 0 (for a given
matrix Θ0) is as follows. Step 1: Initially set πs,t = 0 when s > t or s < t− P. In
this case Π is a band-diagonal matrix with up to P + 1 free, i.e., possibly nonzero
elements in each of its T − P rows. Step 2: Solve ΠΘ0 = 0 subject to (4.17).
If rank(Π) = T − P, then a unique solution, Π0, has been found. However, it is
also possible (depending on Θ0) that rank(Π

0) < T − P and that some rows of
Π are not uniquely determined. These problems will occur when a matrix that
consists of (at least) P consecutive rows of Θ0 bar the first and last row of Θ0

has rank less than P . For example, suppose that a matrix that consists of rows
s, ..., s+P − 1 of Θ0 has rank less than P with 1 < s ≤ T −P. Then it is possible
that π0s−1 = π0s. In this case we have π

0
s−1,s−1 = 0. It is also possible that πs is not

uniquely determined by ΠΘ0 = 0 and (4.17). In order to obtain a unique row π0s
select πs with the lowest value ts for which πs,ts �= 0 (in fact πs,ts > 0). If πs is
still not uniquely determined, then select a solution πs for which the remaining
elements are equal to zero or, if such a solution does not exist, for which the next
nonzero element has the lowest column index. Continue this selection process until
a unique π0s has been obtained. Even when unique rows have been obtained, some

13Since Θ is a T ×P matrix of full rank, there exists an ((T −P )×T ) matrix Π∗ of full rank
that satisfies Π∗Θ = 0. By performing linear operations on Π∗ one can obtain an uppertriangular
matrix Π∗∗ of full rank (T − P ) that satisfies Π∗∗Θ = 0 and has rows that contain up to P + 1
nonzero elements (because rank(Π∗) = T − P, one can find T − P linear combinations of the
rows of Π∗ that each have at least T −P − 1 zero elements). There exists a unique nonsingular
diagonal matrix, say Dπ∗∗ , such that Π = Dπ∗∗Π

∗∗ satisfies (4.17). Furthermore, Π = Dπ∗∗Π
∗∗

is full rank and has rows that contain up to P +1 nonzero elements and ΠΘ0 = Dπ∗∗Π
∗∗Θ = 0.
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rows of Π may be linearly dependent. In order to obtain a solution of full rank the
linearly dependent rows need to be deleted and replaced by different rows. Thus
when rank(Π0) < T − P, the algorithm continues with additional steps. Step 3:
Delete a row of Π0, say π0s, and fill the gap (temporarily) with a row (with the
same row index s) of zeros, whenever π0s,s = 0. Let P 0a

del be the number of deleted
rows and call the resulting matrix Π0a. Step 4: Add min(P 0a

del, P ) new rows to
Π0a : πs, s = T − P + 1, ..., T − P + min(P 0a

del, P ), with πs,t = 0 when t < s.
The other elements of these new rows are free. To find the values of these new
rows solve ΠΘ0 = 0 subject to (4.17) for the nonzero rows. Delete a new row of
Π0a, say π0as , whenever π0as,s = 0. Let P 0b

del be the number of deleted new rows, let
P 1
del = P 0a

del − (min(P 0a
del, P ) − P 0b

del) and call the resulting matrix Π1. Let m = 1
and n = 0. Step 5: Include Pmdel new rows in Πm by replacing the (first) Pmdel
rows that were deleted from Πm−1 with new rows as follows. Suppose that πm−1s

was deleted (because πm−1s,s = 0). Then replace this old πm−1s by a new πs where
πs,t, t = s, ..., s + P + m, are free (i.e., possibly nonzero) elements apart from
πs,ts,k = 0, k = 1, ...,m, where ts,k is the smallest value for t such that π

k−1
s,t > 0;

the other elements of πs are zero. We (can) impose πs,ts,m = 0 because rows
ts,m,...,s + P + m − 1 of Θ0 are linearly dependent (since πm−1s,s = 0, πm−1s,t = 0,

t < ts,m and πs,ts,k = 0, k = 1, ...,m−1) and πm−1s,ts,m > 0. Note that we try to find a
row s, πs, that satisfies π

′

sΘ0 = 0 with πs,s �= 0 so that πs is linearly independent
from the other rows of Π. Imposing the restriction πs,ts,m = 0 does not make it
more difficult to find such a πs since row ts,m of Θ0 is a linear combination of
other rows of Θ0 whose corresponding elements in πs are allowed to be different
from zero. Also note that the new πs will again have P + 1 free elements. To
find the values of the new rows solve ΠΘ0 = 0 subject to (4.17) for the nonzero
rows. Delete a new row of Πm, say πms , and fill the gap temporarily with a row
of zeros, whenever πms,s = 0. Let Pm+1del be the number of deleted new rows and let
Πm+1 be the resulting matrix. Step 6: Set m := m + 1 and repeat step 5 as long
as rank(Πm) < T −K. Whenever πm−1s,s = 0 and s + P + m > T, set n := n + 1,
replace the old πm−1s by a row of zeros, and replace the n−th of the last P 0a

del−P 1
del

rows that were deleted from Π0 and temporarily replaced by rows of zeros, say
row s2, by a new row according to the method described in step 5 upon resetting
m = 1 for this row, i.e., replace the original row s2, π

0
s2
, by a new πs2 where πs2,t,

t = s2, ..., s2 + P + 1, are free elements apart from πs2,ts2,1 = 0 (where ts2,1 is
the smallest value for t such that π0s2,t > 0); the other elements of πs2 are zero.
When rank(Πm) = T −K, drop the rows comprising only zeros. Call the resulting
matrix Π0.
The following example shows an application of the algorithm when P = 2:

Θ′

0 =

(
1 1 1 1 1 1 1
a a a b b d d

)
, (4.18)
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Π0 =
1

2




√
2 −

√
2 0 0 0 0 0

0
√

2 −
√

2 0 0 0 0
0 0 c(b− d) 0 c(d− a) c(a− b) 0

0 0 0
√

2 −
√

2 0 0

0 0 0 0 0
√

2 −
√

2




,

with b �= d and c−1 =
1

2
sign(b− d)

√
(b− d)2 + (d− a)2 + (a− b)2.

We have not imposed the restrictions in (4.12) and (4.13) on Θ0. Nevertheless,
because b �= d, rank(Θ0) = 2. When also a �= b, the factor structure represents
correlated individual effects that are subject to two common correlated breaks
(through the second factor), i.e., breaks that affect the correlated individual effects
synchronously.14 Note that as the two common breaks affect the same correlated
individual effects, i.e., the second factor loadings, the gi,2, they are also perfectly
correlated over time. Since P = 2, Π0 is a 5 × 7 matrix. The first, second and
fourth rows of Π0 are determined in step 2 of the algorithm. Its fifth row is found
in step 4, while its third row is found in step 5 of the algorithm.
Remarks. 1. The algorithm produces a unique ((T − P ) × T ) matrix Π0 of

full rank that solves ΠΘ0 = 0 subject to (4.17) for the following reasons. Firstly,
as mentioned above, there exists an uppertriangular ((T − P ) × T ) matrix Π of
full rank that solves ΠΘ0 = 0 and satisfies (4.17) and has rows that contain up
to P + 1 nonzero elements. Secondly, if necessary the algorithm will consider all
elements of a set of possible solutions that consists of (excluding the rows of zeros)
uppertriangular ((T − P ) × T ) matrices Π that satisfy ΠΘ0 = 0 and (4.17) and
have rows that contain up to P + 1 nonzero elements, and includes at least one
such matrix whose rank is equal to T −P . Note that although the restrictions the
algorithm imposes on the rows of the uppertriangular matrices, i.e., restrictions
such as πs,ts,k = 0, k = 1, ...,m, may exclude some of the matrices that satisfy
ΠΘ0 = 0 and (4.17), have rows that contain up to P +1 nonzero elements and have
rank T −K from the set of possible solutions, these restrictions will not exclude
all of them. For example, when a particular matrix Πe that satisfies ΠΘ0 = 0 and
(4.17) and has rows that contain up to P +1 nonzero elements with πs,s �= 0 is not
included in the set of possible solutions only because its s-th row does not satisfy

14The two essential properties of common correlated breaks, which distinguish them from indi-
vidual correlated breaks, are (i) that the common break(s) affect(s) the individual effects at the
same point(s) in time and (ii) that the/all common break(s) can be modelled (jointly) through
a common factor structure that is identifiable. The latter property rules out the existence of
common correlated breaks in every period that are uncorrelated or imperfectly correlated over
time. We call such breaks individual correlated breaks. Note that a common break may af-
fect only a subgroup of ‘individuals’ in the sample rather than all of them. In this case some
individual effects (factor loadings) are equal to zero.
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πs,ts,k = 0, k = 1, ...,m, then the set includes at least one matrix with πs,s �= 0
whose s-th row does satisfy πs,ts,k = 0, k = 1, ...,m, and whose other rows are
equal to those of Πe.
2. After imposing the restrictions in (4.17), Π has the same number of free

elements asΘ after imposing the restrictions in (4.12) and (4.13), namely (T−P )P.
3. Premultiplication of Θ0g

′

i+ u′i = ε′i = y′i− X̃ ′

iβ− ζ by Π0 yields a system of
T − P linearly independent equations that do not involve Θ0g

′

i. Each row of Π0

gives rise to an equation that is a combination of at most P + 1 equations from
the system y′i − X̃ ′

iβ − ζ = u′i.
Given the relationship between Θ0 and Π0 an adapted version of the algorithm

can be used in an estimation procedure to obtain unique estimates of Π and δ
when the aforementioned identification conditions are met. An (indirect) GMM
estimation procedure (algorithm) for π = vec(Π), β, ζ and θ can be based on

E(Xi ⊗ Π(y′i − X̃ ′

iβ − ζ)) = 0, (4.19)

where Π is an uppertriangular ((T − P ) × T ) matrix whose structure is deter-
mined in each step of the algorithm, on the moment conditions in (4.16) and the
restrictions in (4.17) as well as on the restrictions given by (4.12) and (4.13) and
the restrictions

ΠΘ = 0. (4.20)

The estimation procedure starts with a band-diagonal matrix Π as defined in step
1 of the original algorithm described above. In subsequent steps the estimation
procedure modifies the structure of Π in a similar way as the original algorithm
but uses and evaluates estimates of Π0, Π0a and Πm, m = 1, 2, ... rather than
their true values in this process. In particular, at each step the procedure tests
whether π̂s,t = 0 for some s and t, or whether rank(Π̂) < T − P. To test whether
rank(Π̂) < T − P one can, for instance, use the methods of Cragg and Donald
(1997), e.g., by testing H0 : rank(Π̂) = T − P − 1 against HA : rank(Π̂) = T − P.
Note that the indirect estimation procedure replaces the moment conditions

in (4.15) by the moment conditions in (4.19). The latter are linear in the elements
of Π. As long as the algorithm has not converged or if one is not interested in
the value of θ0 (Θ0) but only in the values of β0 and ζ0, then the estimation
will be based on (4.16), (4.19) and (4.17) alone. When rank(Π̂) = T − P at
the final stage of the estimation algorithm, the restrictions in (4.12), (4.13) and
(4.20) can be used to calculate an estimate of θ. In order to obtain standard errors
for an estimate of θ one can apply the direct estimation method based on (4.15)
and (4.16) using the estimates of β, ζ and θ obtained in the indirect estimation
procedure as starting values.
Remarks. 1. The estimation algorithm generalizes the quasi-differencing ap-

proach of Chamberlain (1983) and Holtz-Eakin et al. (1988) for models with
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P = 1.15 The approach of Holtz-Eakin et al. uses a band-diagonal (T − 1) × T
matrix Π with πs,t = 0 when s > t or s < t − 1. Moreover πt,t = 1 ∀t. This
parametrization of Π is overly restrictive. Even if we replace πt,t = 1 ∀t by the
more flexible normalization (4.17), the two potentially nonzero (so-called free) el-
ements in each row of Π are adjacent. When (an) element(s) of Θ0 is/are equal to
zero, this will lead to selecting the same equation(s) twice and therefore to fewer
moment conditions than our approach. In our approach, which can be used when
P ≥ 1, the P + 1 free elements may be separated by zeros in some rows, as in the
example above.
2. The moment conditions included in (4.19) can be based on a subset of

equations from the system Π̂(y′i − X̃ ′

iβ − ζ) = Π̂u′i.
3. When P = P0, the procedure will yield consistent estimators for π, β, ζ

and θ. However, in finite samples it is possible that the algorithm will produce
an estimate of Π, Π̂, with rank(Π̂) < T − P rather than rank(Π̂) = T − P. In
that case the estimation procedure will exploit those moment conditions in (4.19)
that correspond to a subset of linearly independent equations from the system
Π̂(y′i − X̃ ′

iβ − ζ) = Π̂u′i and it will not be possible to use the procedure to obtain
an estimate of θ.
4. When P < P0, the model is misspecified and the procedure will not yield

consistent estimators for π, β, ζ and θ. In finite samples the algorithm may
produce an estimate of Π, Π̂, with rank(Π̂) < T −P rather than rank(Π̂) = T −P.
In that case the estimation procedure will exploit those moment conditions in
(4.19) that correspond to a subset of linearly independent equations from the
system Π̂(y′i − X̃ ′

iβ − ζ) = Π̂u′i. Irrespective of whether rank(Π̂) = T − P or
not, the J−test of overidentifying restrictions will reject their validity w.p.1 when
N →∞ (provided there are overidentifying restrictions).
5. The factor structure can be used to model one or several common correlated

breaks in the individual effects as illustrated by the example given above. In
general common correlated breaks may be uncorrelated, imperfectly correlated or
perfectly correlated over time. When there are only a few (relative to T ) common
correlated breaks that are uncorrelated over time and no additional individual
correlated breaks in the other periods of the panel, modelling such common breaks
through a factor structure may be preferable over using the methods described
in section 2 that allow for individual correlated breaks in every period. Unlike
the ‘individual break methods’ described in the previous sections, the estimation
approach based on the factor model determines the number and the date(s) of the
common break(s) and does not allow for breaks at other dates, that is, at dates
when they do not occur. This leads to the availability of moment conditions

15We note that Holtz-Eakin et al. allow for slope coefficients that vary over time whereas we
assume that βt = β ∀t. Furthermore their paper considers a dynamic rather than a static model.
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in the estimation algorithm for the factor model that are not exploited by the
‘individual break methods’. They correspond to periods in which no breaks occur.
On the other hand, the estimation algorithm eliminates the factors completely
and allows for at most T − 2 correlated breaks that are not perfectly correlated
over time (provided that there are no other factors unrelated to breaks), whereas
the ‘individual break methods’ allow for correlated breaks in every period, i.e.,
for (up to) T − 1 correlated breaks that are uncorrelated over time. The latter
methods only take differences between equations for two consecutive periods and
do not remove the changes in the individual effects. This leads to the use of
extra moment conditions by the ‘individual break methods’ as compared to the
estimation approach based on the factor model. These moment conditions can
be added to those that are already exploited by the estimation algorithm for the
factor model once the dates of the common breaks have been determined. Thus
both estimation approaches for models with correlated breaks use different sets of
moment conditions that overlap.
When the regressors are strictly exogenous, the ‘factor model GMM estima-

tors’ for the slope parameters, β, in a static panel data model with individual
effects and P − 1 common correlated breaks (in the effects) that are not per-
fectly correlated over time (but without other common factors and without in-
dividual correlated breaks), exploit (T − P )(TK − P ) moment conditions after
ζ and either π or θ have been eliminated. When the breaks are uncorrelated
over time, the ‘individual break method’ for estimating β (in the same model)
exploits possibly (T − 1)2K moment conditions, namely (2.20), (2.22) and pos-
sibly (2.23). Thus when there are breaks, i.e., when P ≥ 2, the ‘factor GMM
estimator’ uses not only different but also less moment conditions than the ‘indi-
vidual break method’. Consider the case with only one common break, i.e., with
P = 2, and no individual breaks. Suppose that the break occurs in period tb
with 2 ≤ tb ≤ T and assume that E(ui|Xi) = 0 and that the ui are condition-
ally homoskedastic and serially uncorrelated, i.e., E(uiu

′

i|Xi) = σ2IT . Then the
optimal ‘factor GMM estimator’ for β is asymptotically equivalent to an LSDV-
type estimator that leaves out the first-differences of the data that correspond
to periods tb and tb − 1. Once the timing of the break, tb, has been determined,
these ‘factor GMM estimators’ can be improved upon by also exploiting the mo-
ment conditions E[∆xi,s(∆yi,tb − β ′∆xi,tb)] = 0, 2 ≤ s ≤ T with s �= tb, and
E[xi,1(∆yi,tb − β′∆xi,tb)] = 0.
6. It is conceivable, both in micro- and macroeconomic panels, that the de-

pendent variables (and some of the regressors) of the ‘individuals’ are affected
by common (correlated) shocks. These shocks can be modelled through a factor
structure, cf. Andrews (2005). When (some of) these shocks affect an arbitrary
individual differently at different points in time, the model will contain several
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factors that mainly consist of zeros. In such cases it is likely that Θ0 will contain
P consecutive rows that form a matrix of rank less than P and that Π0 will be
different from a band-diagonal matrix with P + 1 consecutive nonzero diagonals.
Moreover, the parametrization of Θ of Ahn et al. (2006) will be too restrictive.
Consistent estimation of P0 requires that P0 is uniquely identified. Let P be

the number of factors allowed for when estimating the model. The GSA guarantee
that if P < P0, then there exist no β, ζ and θ (or π) such that (4.16) and (4.15)
(or (4.19)) and the restrictions on θ (or π) are satisfied; if P = P0, then β0,
ζ0 and θ0 (or some true π) satisfy the moment conditions and the parameter
restrictions; and finally if P > P0, then there exist many combinations of β, ζ
and θ (or π) that satisfy the moment conditions and the parameter restrictions.
In particular, when P > P0, θ (π) is not uniquely identified. It follows that P0
is the smallest value of P such that there exist values for β, ζ and θ (or π) that
satisfy the moment conditions and the parameter restrictions. Following Ahn et
al. (2006), we will now describe two GMM procedures by which both P0 and δ0
can be consistently estimated. Both procedures are based on Cragg and Donald
(1997). Similar procedures can be described for the estimation of P0, β0, ζ0 and
some true π. Let mi(δ) = (m′

1,i(δ) m′

2,i(δ))′. Then the optimal GMM estimator

for δ based on (4.15) and (4.16) is given by δ̂(P0) where

δ̂(P ) = arg min
δ

JN (δ, P ) subject to (4.12) and (4.13), and (4.21)

JN (δ, P ) = N

(
N−1

N∑

i=1

mi(δ)

)′ (
N−1

N∑

i=1

mi(δ̂I)m
′

i(δ̂I)

)(
N−1

N∑

i=1

mi(δ)

)
, (4.22)

and δ̂I is an initial consistent estimator for δ. The corresponding J-test of overi-
dentifying restrictions is given by JN(δ̂(P0), P0). We have the following results on
JN(δ̂(P ), P ):

Proposition 4.1. Suppose that the model in (4.1) and (4.2) satisfies GSA in
(4.3)-(4.11) and that Q = −1. Then as N →∞,

(i) for P = P0, JN(δ̂(P0), P0)
d→ χ2((T − P )(dim(Zi)− P )−K)

(ii) for P < P0, JN(δ̂(P ), P )
p→∞.

The results in proposition 1 allow one to consistently estimate P0 (and δ0)
by using a (downward) sequential testing procedure based on JN(δ̂(P ), P ): test
H0 : P0 = p against HA : P0 > p for p = 0, 1, 2, ... until one can no longer reject
H0. Thus the estimator P̂seq for P0 is the smallest value for p for which one cannot
reject H0. Consistency of P̂seq requires that the significance level tends to zero as
N →∞ but no too fast (cf. Cragg and Donald, 1997):
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Proposition 4.2. Let bN be the significance level used at each step of the se-
quential testing procedure. If bN → 0 and -ln(bN)/N → 0 as N → ∞, then P̂seq
is a consistent estimator for P0.

The choice of the significance level is subjective. Therefore one may pre-
fer an alternative estimation method based on minimizing a criterion function
that consists of the J statistic and a bonus term that rewards the use of fewer
parameters for a given number of moment conditions or the use of more mo-
ment conditions for a given number of parameters. Let SN(P ) = JN (δ̂(P ), P ) −
κN((T − P )(dim(Zi) − P ) − K) where {κN} is a sequence of positive constants
and (T − P )(dim(Zi)− P )−K is the number of overidentifying restrictions. Let
P̂ = arg min

P
SN(P ) We have the following result for P̂ :

Proposition 4.3. Suppose that the model in (4.1) and (4.2) satisfies GSA in
(4.3)-(4.11) and that Q = −1. Then P̂ is a consistent estimator for P0 if {κN} is
such that limN→∞ κN = ∞ and κN = o(N).

The choice of {κN} is subjective. One possibility is κN = c ln(N) for some
constant c > 0. This corresponds to the Schwarz (BIC) criterion. Another possi-
bility is κN = c ln ln(N). This corresponds to the Hannan-Quinn (HQIC) criterion.
Given the same value of c and the same number of instruments (dim(Zi)), the BIC
penalizes the use of extra parameters (factors) more than the HQIC. Nevertheless
both criteria yields consistent estimators for P0 (and δ0).
The downward sequential testing procedure and the penalized criterion func-

tion method can also be used to estimate the general model in (4.1) and (4.2) with
both common factors and Q ≥ 0 after applying a first-difference transformation
to the model.

4.1. Tests for the absence of individual and common correlated breaks

that are uncorrelated over time

When individual correlated breaks are uncorrelated over time and occur in every
period in the sample, β can be estimated by GMM based on moment conditions
such as those in (2.20). In this case modelling the breaks through a factor struc-
ture would require T common factors leaving the model unidentified. On the
other hand when the breaks occur in only one or just a few unknown period(s)
(relative to T ), then modelling the break(s) through a factor structure can lead
to a more efficient estimator for β than a GMM estimator based only on moment
conditions like (2.20). Thus it is useful to distinguish between individual and
common correlated breaks that are uncorrelated over time.
In the general model (4.1) and (4.2) one can test for the absence of individual

and possibly common correlated breaks that are uncorrelated over time as follows:
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1. Apply the downward sequential testing procedure or the penalized criterion
function method to the moment conditions in (4.16) and to the model in
first-differences using suitable lags (and possibly leads) of the regressors
(if necessary in first-differences) as instruments. This yields estimators P̂U
and δ̂U for P and δ. They are consistent in the presence of individual and
common correlated breaks.

2. Re-estimate the model using (4.16) and (4.15) (or (4.19)) with P = P̂U
and all lags and current values (and possibly leads) of the regressors as
instruments. If there are no individual correlated breaks and no common
correlated breaks that are uncorrelated over time, this yields a more efficient
estimator δ̂R for δ.

3. Next one can test the hypothesis that there are no individual correlated
breaks and no common breaks that are uncorrelated over time either by
conducting a Hausman test based on δ̂R − δ̂U or β̂R − β̂U , or by conduct-
ing a Sargan-Difference test based on JN(δ̂R(P̂U), P̂U)− JN(δ̂U(P̂U), P̂U). If
this hypothesis is rejected, then one can sequentially test for the absence
of individual correlated breaks whilst allowing for one or several common
correlated breaks that are uncorrelated over time as follows:

Re-estimate the model using (4.16) and (4.15) (or (4.19)) with P = P̂U + p,
where p = 1, 2, 3, ... and all lags and current values (and possibly leads) of the
regressors as instruments, and carry out a J − test until the overidentifying
restrictions are not rejected or p exceeds an upperbound p̄. If the latter
happens, then one concludes that the model has individual correlated breaks
and/or more than p̄ common correlated breaks that are uncorrelated over
time.

5. Dynamic panel data models with random structural breaks

In this section we will study consistent estimation of the panel AR(1) model with
random structural breaks in the individual effects: 16

yi,t = ρyi,t−1 + εi,t (i = 1, ..., N, t = 2, ..., T ), (5.1)

εi,t = fi,t + ui,t,

fi,t = fi,t−1 + vi,t, for t ≥ 2.

We assume that the observed process, {yi,t}, and the latent individual effect
process, {fi,t}, start in the same period, i.e., at t = 1. In addition, −1 < ρ ≤ 1.

16We could easily allow for a (non-zero) common mean as in yi,t = (1− ρ)c+ ρyi,t−1 + εi,t or
for common (additive) time effects by introducing time dummies.
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Let Y ti = (yi,1 ... yi,t), ∆Y ti = (∆yi,2 ... ∆yi,t), u
t
i = (ui,2 ... ui,t) and ui = uTi .

Furthermore, let ΣD = E[(yi,1 Fi)
′(yi,1 Fi)] =

[
σyy Σ′

Fy

ΣFy ΣDFF

]
.

We make the following Standard Assumptions with respect to the above Dy-
namic panel data model [DSA]:

DSA.1: (yi,1 Fi ui) is i.i.d. over i, and E(Fi ui) = 0, (5.2)

DSA.2: 0 < E(u2i,t) = σ2t <∞, for t ≥ 2, (5.3)

DSA.3: ΣD is finite, (5.4)

DSA.4: E(ui,tY
t−1
i ) = 0, E(ui,tF

t−1
i ) = 0, for t ≥ 2, (5.5)

DSA.5: Pr(fi,t �= fi,t−1) > 0, for t ≥ 2, (5.6)

DSA.6: E(vi,t∆Y t−2i ) = 0, for t > 3. (5.7)

Given that we are interested in the consequences of changes in the individual
effects for estimation, it is practical to make assumption (5.6). Note that assump-
tion (5.2) implies that E(vi,t) = 0, ∀t ≥ 2.
The above Standard Assumptions for the Dynamic model in (5.1) [DSA] can

be compared with those listed by Ahn and Schmidt (1995) for the panel AR(1)
model with time-invariant individual effects. The assumptions concerning the
idiosyncratic errors, the ui,t, are similar: in particular, assumptions (5.2) and
(5.5) imply that E(ui,t) = 0, ∀t ≥ 2, E(ui,sui,t) = 0, ∀s, t ≥ 2 and E(yi,1ui,t) = 0,
∀t ≥ 2. However, the assumption of Ahn and Schmidt that E(fi,1ui,t) = 0, (and
vi,t = 0) ∀t ≥ 2, has been replaced by E(ui,tF

t−1
i ) = 0, ∀t ≥ 2.Thus the individual

effects are assumed to be predetermined. A stronger assumption than (5.5) would
be that E(ui,tY

t−1
i ) = 0 and E(ui,tFi) = 0, for t ≥ 2, so that the individual effects

are strictly exogenous. Such an assumption would imply that E(ui,svi,t) = 0,
∀s, t ≥ 2 and in combination with assumption (5.7) that E(vi,svi,t) = 0, ∀s, t with
t > s + 1 > 3. Assumption (5.7) is very similar to assumption (2.7) for the static
model although it does not include the assumption that E(vi,t∆yi,t−1) = 0. A
somewhat stronger assumption than (5.7) is that E(vi,t∆yi,2) = 0, E(vi,tvi,s) = 0,
s = 3, ..., t − 2, and E(vi,t∆ui,s) = 0, s = 3, ..., t − 2, for t > 3. 17 Such an
assumption would be implied by the assumptions (5.7) and E(ui,tFi) = 0, for
t ≥ 2.
A simple IV estimator for (5.1) is given by

ρ̂IV dif =
(∑N

i=1

∑T

t=4
(∆yi,t−2∆yi,t−1)

)
−1∑N

i=1

∑T

t=4
(∆yi,t−2∆yi,t).

Consistency of ρ̂IV dif follows immediately from the assumptions (5.5) and (5.7).

17If {vi,t} follows an MA(q) process, we replace assumption (5.7) by E(vi,t∆Y
t−q−2
i ) = 0, for

t > q + 3.
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A GMM estimator that is consistent and asymptotically more efficient than
ρ̂IV dif when T > 4, optimally exploits the following moment conditions:

E[∆yi,s(∆yi,t − ρ∆yi,t−1)] = 0, s = 2, ..., t− 2, t = 4, ..., T. (5.8)

DSA do not rule out that E(vi,tyi,s) �= 0 for some t ∈ {3, ..., T} and s ∈
{1, ..., t− 2}. To guarantee that the GMM estimator of Arellano and Bond (1991)
for the panel AR(1) model, which exploits

E[yi,s(∆yi,t − ρ∆yi,t−1)] = 0, s = 1, ..., t− 2, t = 3, ..., T, (5.9)

will be consistent, we need to replace (5.7) in DSA by a stronger assumption, such
as

E(vi,tY
t−2
i ) = 0, for t ≥ 3, (5.10)

or E(vi,tyi,1) = 0, E(vi,tfi,s) = 0, s = 2, ..., t − 2, and E(vi,tui,s), s = 2, ..., t − 2,
for t ≥ 3.
The following non-linear moment conditions due to Ahn and Schmidt (1995)

E[(yi,T − ρyi,T−1))(∆yi,t − ρ∆yi,t−1)] = 0, t = 3, ..., T − 1, (5.11)

are no longer valid when there are breaks in the individual effects between t = 2
and t = T − 1. In fact, provided that T ≥ 4, they can be used individually or
jointly to test whether there are breaks in the {fi,t} at any point in time between
t = 2 and t = T − 1.
Consider the following assumptions which are much stronger than assumptions

(5.5) and (5.7) in DSA:

DSA′ : E(ui,tY
t−1
i ) and E(ui,tF

T
i ) = 0, for t ≥ 2 (5.12)

E(vi,tY
t−1
i ) and E(vi,t fi,1) = 0, for t ≥ 2, and (5.13)

E(fi,1∆yi,2) = 0. (5.14)

Given the model in (5.1), it follows from the assumptions (5.12) and (5.13) that
E(vi,tY

t−1
i ) = 0 and E(vi,tF

t−1
i ) = 0, for t ≥ 2, and from the assumptions (5.12)-

(5.14) that E(fi,1∆yi,t) = 0, for t ≥ 2. Nevertheless, under DSA′ and assumption
(5.6) the following moment conditions

E[∆yi,s(yi,t − ρyi,t−1)] = 0, s = 2, ..., t− 1, t = 3, ..., T, (5.15)

which have first been proposed by Arellano and Bover (1995), are still invalid be-
cause E[∆yi,s(yi,t − ρyi,t−1)] = E[(ρ∆yi,s−1 + vi,s + ∆ui,s)(fi,t + ui,t)] =
E[(

∑s−3
q=0 ρ

qvi,s−q + ρs−2∆yi,2)(fi,1 +
∑t
p=2 vi,p)] �= 0, for s = 2, ..., t− 1, t = 3, ..., T .
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18 Thus in general the moment conditions in (5.15) can be invalid either because
E(fi,1∆yi,2) = 0 fails to hold or because the individual effects are subject to ran-
dom structural breaks. On the other hand, the moment conditions due to Arellano
and Bond given in (5.9) may still hold when the individual effects are subject to
random structural breaks. Therefore, neither the moment conditions given in
(5.9) nor those given in (5.15) can be used to construct a Sargan-Difference test
(with useful power) for the simple hypothesis that the individual effects are not
subject to structural breaks.
Finally, the ‘homoskedasticity moment conditions’ due to Ahn and Schmidt

(1995), i.e.,

E[(yi,t − ρyi,t−1)
2 − (yi,t−1 − ρyi,t−2)

2] = 0, t = 3, ..., T, (5.16)

will also be invalid if Pr(fi,t �= fi,t−1) > 0, for t ≥ 3. Thus when T ≥ 3 one can use
these moment conditions to test the joint hypothesis of serial homoskedasticity of
the {ui,s} and no breaks in the {fi,s} after t = 2.

6. Empirical example

In progress...

7. Simulation experiments

In progress...

8. Concluding remarks

In this paper the traditional panel data models have been generalized by allowing
for, possibly multiple, individual effects that exhibit random structural breaks.
The timing, the number and the magnitude(s) of these breaks may or may not
differ across the individuals. There may even be breaks in every period of the
sample. The changes in the individual effects can be uncorrelated, imperfectly
correlated or perfectly correlated over time. Breaks that are correlated over time
are modelled either through a factor structure or as MA processes. Moreover, the
breaks may be correlated with the changes in the regressors. The LSDV estimator
is not consistent for generalized static panel data models where this is the case.
However, upon transforming them, such models can be consistently estimated by

18When s = 2 and t = 3, E[∆yi,s(yi,t − ρyi,t−1)] = E[∆yi,2(fi,3)] = E[∆yi,2(fi,2)] =
E[∆yi,2(vi,2)] = E[((ρ − 1)yi,1 + ui,2 + fi,2)vi,2] = E[fi,2vi,2] = E[(vi,2)

2] > 0 unless
Pr(vi,2 = 0) = 1. However, assumption (5.6) implies that Pr(vi,2 = 0) < 1.
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the IV method or GMM. The paper describes an estimation algorithm that can
be used when the model contains common factors.
A further generalization of these models is obtained when the individual effects

are modelled as ARMA processes with homogeneous autoregressive parameters
rather than as IMA processes. The autoregressive parameters can be allowed to
vary over time. Such models can also be consistently estimated by the IV method
or GMM after applying a quasi-difference transformation.
After taking first-differences, the problem of estimating a panel data model

with correlated breaks in the individual effects that follow MA(1) processes, may
seem to be rather similar to that of estimating a panel data model with regres-
sors that are both correlated with the individual effects and subject to serially
uncorrelated measurement errors. However, for the latter model extra moment
conditions may be available: in particular, past levels of the regressors are in prin-
ciple valid instruments for the equations in first-differences and if the regressors
are strictly exogenous, future levels of the regressors are also valid instruments
for the equations in first-differences.
There are two versions of the Arellano-Bond GMM estimator for the panel

AR(1) model: one version uses lagged levels of the data as instruments and the
other version uses lagged differences of the data as instruments. The latter version
of the estimator is more robust than the former version as it may still be consistent
when the changes in the individual effects are correlated with the initial conditions,
i.e., the yi,1, and it is also consistent for a broader class of time-invariant individual
effects than the former version, i.e., it is the fixed effects version of this GMM
estimator (see Kruiniger (2002)).
Finally, we have seen that in the context of the panel AR(1) model one cannot

construct a Sargan-Difference test with useful power for the simple hypothesis
that the individual effects do not exhibit any structural breaks during the entire
sample period: however, the absence of structural breaks in the effects between
t = 1 and t = T can be tested jointly with some kind of stationarity assumption.
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